Quantorenlogik/Anwender/Einführung/Textabschnitt
Betrachten wir nochmal die beiden Beispielaussagen
- Marsmenschen sind grün
und
- Ich fresse einen Besen,
und schauen uns die innere Struktur genauer an. In der ersten Aussage wird einer gewissen Art von Lebewesen eine Eigenschaft zugesprochen, so wie wenn man sagt, dass Geparden schnell sind oder dass Faultiere faul sind. Damit kann man meinen, dass Marsmenschen „im Normalfall“ oder „fast immer“ grün sind, oder aber im strengeren Sinn, dass wirklich alle Marsmenschen grün sind. In der Mathematik interessiert man sich für Aussagen, die ohne Ausnahmen gelten (wobei man allerdings in einer mathematischen Aussage die Ausnahmen auch explizit machen kann), sodass wir die Aussage im strengen Sinn verstehen wollen. Es handelt sich um eine sogenannte Allaussage. In ihr kommen zwei Prädikate (Eigenschaften, Attribute) vor, nämlich einerseits, ein Marsmensch zu sein, andererseits, grün zu sein. Ein Prädikat ist etwas, was einem Objekt (grammatisch spricht man von einem Subjekt), einem Gegenstand, einem Element zukommen oder nicht zukommen kann. Ein Prädikat ist für sich genommen keine Aussage; aus einem Prädikat kann man aber grundsätzlich auf zwei verschiedene Arten eine Aussage machen, indem man nämlich einerseits (durch einsetzen) für ein konkretes Objekt die Aussage
bildet, die bedeutet, dass das Objekt die Eigenschaft besitzt, was wahr sein kann oder eben auch nicht. Andererseits kann man aus durch Quantifizierung eine Aussage gewinnen. So kann man die Aussage bilden, dass alle[1] Objekte (typischerweise aus einer bestimmten Grundmenge) die Eigenschaft haben, was wiederum wahr oder falsch sein kann. Das drückt man formallogisch durch
aus. Das Symbol
ist eine abkürzende Schreibweise für „für alle“[2], oder „für jedes“ und besitzt ansonsten keine tiefere Bedeutung. Es wird Allquantor genannt. Die obige Marsmenschenaussage kann man als
schreiben. Das bedeutet, dass für alle Objekte ohne weitere Einschränkung gilt: wenn es sich um einen Marsmenschen handelt (wenn also zutrifft), dann ist er auch grün. Für jedes steht in der großen Klammer eine Aussage in der Form einer Implikation, die eben besagt, dass wenn der Vordersatz wahr ist, dann auch der Nachsatz wahr sein muss.
Die zweite Beispielaussage kann bedeuten, dass ich genau einen Besen fresse oder aber mindestens einen Besen. Die Wortbedeutung des unbestimmten Artikels ist nicht eindeutig, in einer Aussage wie „eine Pflanze braucht Wasser“ bedeutet „eine“ sogar „alle“. In der Mathematik bedeutet es fast immer „mindestens einen“. Die Besenaussage kann man also paraphrasieren als
- Es gibt einen Besen, den ich fresse.
Dies ist eine Existenzaussage.[3] Eine formallogische Repräsentierung ist
wobei bedeutet, dass das Objekt ein Besen ist und wobei bedeutet, dass ich dieses fresse. Man könnte genauso gut
schreiben. Das Zeichen
wird „es gibt“ oder „es existiert“ gesprochen und wird der Existenzquantor
(oder Existenzoperator) genannt.
Eine Allaussage behauptet, dass ein gewisses Prädikat allen Objekten (aus einer gewissen Grundmenge) zukommt. Wie alle Aussagen kann dies wahr oder falsch sein. Eine Allaussage ist genau dann falsch, wenn es mindestens ein Objekt (aus der Grundmenge) gibt, dem das Prädikat nicht zukommt. Daher sind die beiden Quantoren, also der Allquantor und der Existenzquantor, über die Negation eng miteinander verknüpft und lassen sich gegenseitig ersetzen, und zwar gelten die Regeln
und
Neben einstelligen Prädikaten wie gibt es auch mehrstellige Prädikate der Form
die eine Beziehung zwischen mehreren Objekten ausdrücken, wie z.B. „ist verwandt mit“, „ist größer als“, „sind Eltern von“ u.s.w. Entsprechend kann dann über die verschiedenen Variablen quantifiziert werden, d.h. man hat mit Ausdrücken der Form
zu tun.
Die Variablenbezeichnung in einer quantifizierten Aussage ist grundsätzlich unwichtig, d.h. es ist egal, ob man oder schreibt. Man darf dabei aber nur Variablennamen (also Buchstaben) verwenden, die im gegenwärtigen Kontext nicht schon anderweitig verwendet sind.
Die Logik, die sich mit quantifizierten Aussagen auseinandersetzt, heißt Prädikatenlogik oder Quantorenlogik. Wir werden sie nicht systematisch entwickeln, da sie in der Mathematik als Mengentheorie auftritt. Statt , dass also ein Prädikat einem Objekt zukommt, schreiben wir , wobei dann die Menge aller Objekte bezeichnet, die diese Eigenschaft haben. Mehrstellige Prädikate treten in der Mathematik als Relationen auf.
- ↑ Andere Formulierungen sind: jedes, ein beliebiges, irgendein Objekt/Element aus der Grundmenge. Wenn die Grundmenge räumlich ist, so spricht man auch von überall, wenn sie zeitlich ist, so spricht man von immer, stets, ....
- ↑ Man kann mit einiger Berechtigung sagen, dass die Vokabeln „für alle“ und „es gibt“ die wichtigsten Formulierungen der Mathematik sind.
- ↑ Neben „es gibt“ trifft man auf Formulierungen wie „es existiert“, „man findet“, „man kann finden“. Wenn die Existenz eines Objektes bekannt ist, so wird in einer mathematischen Argumentation häufig ein solches Element „hergenommen“, irgendwie bezeichnet und dann weiterverarbeitet.