Rationale Zahlen/Brüche/Ausführlich/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Unter einer rationalen Zahl versteht man einen Ausdruck der Form

wobei und sind, und wobei zwei Ausdrücke und genau dann als gleich betrachtet werden, wenn (in ) gilt. Die Menge aller rationalen Zahlen wird mit bezeichnet.

Einen Ausdruck nennt man Bruch, wobei der Zähler und der Nenner des Bruches heißt. Eine rationale Zahl wird durch verschiedene Brüche beschrieben und kann mit unterschiedlichen Zählern und Nennern dargestellt werden, beispielsweise ist

Man sagt auch, dass diese beiden Brüche gleichwertig sind. Für die rationale Zahl schreibt man einfach . In diesem Sinne sind ganze Zahlen insbesondere auch rationale Zahlen. Insbesondere gibt es die Null und die Eins . Es gelten die folgenden Identitäten (dabei seien , ansonsten seien beliebig).

Die Begründung für de Richtigkeit dieser Regeln liegt in der Überkreuzregel. Die letzte Regel heißt Erweiterungsregel (wenn man sie von links nach rechts liest) bzw. Kürzungsregel (wenn man sie von rechts nach links liest). Der Wert eines Bruches (also die rationale Zahl, die durch den Bruch festgelegt ist) ändert sich also nicht, wenn man sowohl den Zähler als auch den Nenner mit der gleichen, von verschiedenen ganzen Zahl multipliziert. Wegen

kann man jede rationale Zahl mit einem positiven Nenner schreiben. Zwei Brüche mit einem gemeinsamen Nenner, also von der Form und , heißen gleichnamig. Zwei beliebige Brüche und kann man gleichnamig machen, indem man sie durch Erweiterung auf einen Hauptnenner bringt. Eine Möglichkeit ist, die beiden Nenner miteinander zu multiplizieren und zu den gleichwertigen Brüchen und überzugehen. Statt mit kann man mit jedem gemeinsamen Vielfachen der Nenner arbeiten.


Definition  

Ein Bruch heißt gekürzt, wenn und teilerfremd sind.

Zu jeder rationalen Zahl gibt es eine gekürzte Darstellung. Wenn man den Nenner positiv wählt, ist diese Darstellung sogar eindeutig. Man erhält sie, indem man in einer beliebigen Darstellung durch den größten gemeinsamen Teiler des Zählers und des Nenners dividiert und das Vorzeichen anpasst.


Definition  

Eine rationale Zahl der Form , , heißt Stammbruch.



Fußnoten