Zum Inhalt springen

Reihe/R/n^nz^n/Bestimme Konvergenzpunkte/Aufgabe/Lösung

Aus Wikiversity


Es handelt sich um eine Potenzreihe mit den Koeffizienten . Sie konvergiert für , da dann nur ein Glied von verschieden ist. Wir behaupten, dass die Reihe für keine weitere reelle Zahl konvergiert. Da es sich um eine Potenzreihe handelt, genügt es, für jede reelle positive Zahl nachzuweisen, dass die Reihe divergiert. Zu gibt es ein mit . Es gilt dann auch für alle . Wegen

erfüllt die Reihe nicht das Cauchy-Kriterium und kann daher nicht konvergieren.