Zum Inhalt springen

Reihen/Reelle Zahlen/Leibnizkriterium/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Wir setzen

Wir betrachten die Teilfolge mit geradem Index. Für jedes gilt wegen die Beziehung

d.h. diese Teilfolge ist fallend. Ebenso ist die Folge der ungeraden Teilsummen wachsend. Es gelten die Abschätzungen

Daher sind die beiden Teilfolgen fallend und nach unten beschränkt bzw. wachsend und nach oben beschränkt, und daher wegen Fakt konvergent. Wegen und

stimmen die Grenzwerte überein.