Rekursiver Aufbau/Sprünge in Z^2/1/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir betrachten die rekursiv definierte Teilmenge von , die durch die Startmenge und die folgenden Rekursionsvorschriften gegeben ist.

  1. Wenn ist, so ist auch .
  2. Wenn ist, so ist auch .
  3. Wenn ist, so ist auch .

Zeige die folgenden Aussagen.

  1. Der Punkt gehört zu .
  2. Der Punkt gehört zu .
  3. Der Punkt gehört zu .
  4. Ein Punkt besitzt im Allgemeinen keine eindeutige Generierung.
  5. Jeder Punkt besitzt die Eigenschaft, dass ein Vielfaches von ist.
  6. Wenn die Eigenschaft besitzt, dass ein Vielfaches von ist, so ist .