Topologie/Grundbegriffe/Keine Topologische Äquivalenz/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei die Einschränkung der Exponentialabbildung auf das halboffene Intervall . Diese Abbildung ist stetig und bijektiv, aber die Umkehrabbildung ist nicht stetig. Denn es ist eine Folge mit

Dieses Phänomen tritt bei Gruppenhomomorphismen nicht auf. Ist ein bijektiver Gruppenhomomorphismus, so ist die Umkehrabbildung automatisch ein Gruppenhomomorphismus. In der kommenden Veranstaltung werden wir topologische Kriterien erarbeiten, die dieses pathologische Phänomen ausschließen.