Der Unterraum ist ebenfalls endlichdimensional. Es sei eine Basis von , die wir durch zu einer Basis von ergänzen können. Es sei . Wir betrachten die lineare Abbildung
-
die durch
-
und
-
festgelegt ist
(dabei sei der -te Standardvektor des ), was nach dem
Basisfestlegungssatz
möglich ist. Wegen
-
ist die Abbildung surjektiv. Offenbar ist . Es sei
-
Dann ist
-
Da die Standardbasis vorliegt, sind die
und daher ist
. Also ist
.