Verknüpfung/Produktmenge bekannt/Natürliche Zahlen/Elementare Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Eine Verknüpfung auf einer Menge ist eine Abbildung

Statt Verknüpfung sagt man auch Operation. Das Verknüpfungszeichen ist hier einigermaßen willkürlich gewählt, um vorschnelle Assoziationen zu vermeiden. In vielen konkreten Situation steht hier oder . Das „neue“ Element heißt dann auch das Ergebnis der Operation. Da das Ergebnis wieder zur Ausgangsmenge gehört, kann man es weiter verknüpfen mit weiteren Elementen. Dies erfordert im Allgemeinen Klammerungen, um zu wissen, in welcher Reihenfolge welche Elemente miteinander verknüpft werden sollen. Im Allgemeinen ist


Definition  

Eine Verknüpfung

auf einer Menge heißt assoziativ, wenn für alle die Gleichheit

gilt.

Man sagt auch, dass für die Verknüpfung das Assoziativgesetz oder die Klammerregel gilt.


Definition  

Eine Verknüpfung

auf einer Menge heißt kommutativ, wenn für alle die Gleichheit

gilt.

Man sagt auch, dass für die Verknüpfung das Kommutativgesetz oder das Vertauschungsgesetz gilt. Die Addition und die Multiplikation auf den natürlichen Zahlen sind beide assoziativ und kommutativ.


Definition  

Es sei eine Menge mit einer Verknüpfung

gegeben. Dann heißt ein Element neutrales Element der Verknüpfung, wenn für alle die Gleichheit gilt.

Bei der Addition auf den natürlichen Zahlen ist das neutrale Element und bei der Multiplikation auf den natürlichen Zahlen ist das neutrale Element. Deshalb ist es in der abstrakten Formulierung sinnvoll, eine unbelastete Bezeichnung zu wählen. Wenn die Verknüpfung kommutativ ist, so muss man die Eigenschaft des neutralen Elementes nur von einer Seite überprüfen.