# Wurzeln/Linearkombination/Rechnung/2/Aufgabe/Lösung

Zur Navigation springen Zur Suche springen

Es ist

{\displaystyle {}{\begin{aligned}{\left({\frac {2}{5}}-{\frac {1}{6}}{\sqrt[{3}]{2}}+{\frac {1}{5}}{\left({\sqrt[{3}]{2}}\right)}^{2}\right)}\cdot {\left(-{\frac {2}{5}}+7{\sqrt[{3}]{2}}+{\frac {1}{4}}{\left({\sqrt[{3}]{2}}\right)}^{2}\right)}&={\left({\frac {2}{5}}-{\frac {1}{6}}\cdot 2^{\frac {1}{3}}+{\frac {1}{5}}\cdot 2^{\frac {2}{3}}\right)}\cdot {\left(-{\frac {2}{5}}+7\cdot 2^{\frac {1}{3}}+{\frac {1}{4}}\cdot 2^{\frac {2}{3}}\right)}\\&=-{\frac {4}{25}}+{\left({\frac {14}{5}}+{\frac {1}{15}}\right)}\cdot 2^{\frac {1}{3}}+{\left({\frac {1}{10}}-{\frac {7}{6}}-{\frac {2}{25}}\right)}\cdot 2^{\frac {2}{3}}+{\left(-{\frac {1}{24}}+{\frac {7}{5}}\right)}\cdot 2+{\frac {1}{20}}\cdot 2^{\frac {4}{3}}\\&=-{\frac {4}{25}}-{\frac {1}{12}}+{\frac {14}{5}}+{\left({\frac {14}{5}}+{\frac {1}{15}}+{\frac {1}{10}}\right)}\cdot 2^{\frac {1}{3}}+{\left({\frac {1}{10}}-{\frac {7}{6}}-{\frac {2}{25}}\right)}\cdot 2^{\frac {2}{3}}\\&={\frac {-48-25+840}{300}}+{\frac {84+2+3}{30}}\cdot 2^{\frac {1}{3}}+{\frac {15-175-12}{150}}\cdot 2^{\frac {2}{3}}\\&={\frac {767}{300}}+{\frac {89}{30}}\cdot 2^{\frac {1}{3}}-{\frac {86}{75}}\cdot 2^{\frac {2}{3}}.\,\end{aligned}}}
Zur gelösten Aufgabe