Zum Inhalt springen

Zentrales Kraftfeld/Harmonisch/Zweidimensional/Übersetzung/Aufgabe

Aus Wikiversity

Wir betrachten ein zweidimensionales Kraftfeld, das in jedem Punkt in Richtung des Ursprungs wirkt und damit eine Beschleunigung erzeugt, die proportional zur Entfernung sein soll (also ein harmonisches Pendel in der Ebene). Die zugehörige zweidimensionale Differentialgleichung zweiter Ordnung ist

wobei eine positive Konstante ist, die von der Masse des Zentrums abhängt. Mit den zusätzlichen Geschwindigkeitsvariablen und führt dies auf das System erster Ordnung in vier Variablen,

Dabei sind die beiden ersten Gleichungen unabhängig von den beiden letzten Gleichungen, und zwar handelt es sich jeweils um das in Aufgabe besprochene System. Somit sind die Lösungen gleich

und

Man überlege sich, wie die Anfangsbedingungen mit den Lösungsparametern zusammenhängen und welche Bahnen die Lösungskurven beschreiben. Wann ist es ein Kreis, eine Ellipse, ein Strahl, eine Spirale?