Zwei Achsenspiegelungen/Hintereinanderschaltung nicht diagonalisierbar/Beispiel
Erscheinungsbild
Es seien und zwei Geraden im durch den Nullpunkt und es seien und die Achsenspiegelungen an diesen Achsen. Eine Achsenspiegelung ist stets diagonalisierbar, und zwar sind die Spiegelungsachse und die dazu senkrechte Gerade Eigengeraden (zu den Eigenwerten und ). Die Hintereinanderschaltung
dieser Spiegelungen ist eine Drehung, und zwar ist der Drehwinkel das Doppelte des Winkels zwischen den beiden Achsen. Eine Drehung ist aber nur dann diagonalisierbar, wenn der Drehwinkel oder Grad beträgt. Wenn der Winkel zwischen den Achsen von Grad verschieden ist, so besitzt keinen Eigenvektor.