Zwischenwertsatz/Tisch drehen/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Ein regelmäßiger quadratischer Tisch mit vier Beinen steht auf einem unebenen, aber stufenfreien Untergrund. Im Moment steht er auf den Beinen und das Bein ragt in die Höhe (wenn man in ihrer Position belässt und auf den Boden drückt, würde versinken). Wir behaupten, dass man den Tisch durch eine (maximal Viertel)-Drehung um die eigene Achse (sagen wir gegen den Uhrzeigersinn) in eine Position bringen kann, wo er auf allen vier Beinen steht (wobei der Tisch nicht unbedingt genau horizontal stehen muss). Dazu betrachten wir die Funktion, die einem Drehwinkel (zwischen und Grad) die Höhe des Beines über dem Grund zuordnet, wenn die drei übrigen Beine auf dem Boden stehen (würden). Dabei kann diese Höhe auch negativ werden (was sich bei einem sandigen Untergrund praktisch realisieren lässt; sonst denke man sich dies „virtuell“). Bei Grad ist die Höhe positiv. Bei Grad erhält man eine Situation, die symmetrisch zur Ausgangssposition ist, wobei aber nach wie vor die Beine auf dem Boden sein sollen. Wegen der in der Klammer formulierten Beobachtung muss die Höhe von negativ sein. Die Funktion hat also auf dem Intervall sowohl positive als auch negative Werte. Da sie wegen der Stufenfreiheit stetig ist, besitzt sie nach dem Zwischenwertsatz auch eine Nullstelle.