Äquivalenzklassen/Partition/Eigenschaften/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis
  1. Seien und äquivalent und . Dann ist und nach der Transitivität auch , also . Damit stimmen die Äquivalenzklassen überein. Die Implikation von der Mitte nach rechts ist klar, da wegen Äquivalenzklassen nicht leer sind. Sei nun , und sei ein Element im Durchschnitt. Dann ist und und wegen der Transitivität ist .
  2. Wegen der Reflexivität ist und daher ist . Wegen Teil (1) ist die Vereinigung disjunkt.
  3. Die Surjektivität ist klar aufgrund der Definition der Quotientenmenge, und da auf die Klasse geschickt wird.
  4. Es ist
  5. Sei gegeben. Die einzige Möglichkeit für ist zu setzen. Es muss aber gezeigt werden, dass diese Abbildung überhaupt wohldefiniert ist, also unabhängig von der Wahl des Repräsentanten ist. Sei hierzu , also . Dann ist nach der Voraussetzung an aber .
Zur bewiesenen Aussage