Affin-algebraische Mengen/Affiner Raum/Unendlicher Körper/Koordinatenring ist Polynomring/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir beweisen die Aussage durch Induktion über die Anzahl der Variablen. Bei folgt die Aussage daraus, dass ein Polynom vom Grad maximal Nullstellen besitzt. Zum Induktionsschritt sei ein Polynom, das an allen Punkten von verschwindet. Wir schreiben als

mit Polynomen . Wir müssen zeigen, dass ist, was zu für alle äquivalent ist. Sei also (ohne Einschränkung) angenommen, dass nicht das Nullpolynom ist. Nach Induktionsvoraussetzung ist es dann auch nicht die Nullfunktion, d.h. es gibt einen Punkt mit . Damit ist ein Polynom in der einen Variablen vom Grad und ist nach dem Fall einer Variablen nicht die Nullfunktion.