Analysis 1/Gemischte Definitionsabfrage/14/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Die Abbildung

    ist injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.

  2. Eine reelle Folge heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  3. Der natürliche Logarithmus

    ist als die Umkehrfunktion der reellen Exponentialfunktion definiert.

  4. Die Ableitungsfunktion ist die Abbildung

    die jedem Punkt die Ableitung von an der Stelle zuordnet.

  5. Das nach Voraussetzung existierende Oberintegral zu über heißt bestimmtes Integral.
  6. Eine Differentialgleichung der Form

    mit Funktionen (dabei sind und reelle Intervalle)

    und

    heißt gewöhnliche Differentialgleichung mit getrennten Variablen.

Zur gelösten Aufgabe