Angeordneter Körper/Rationale Folgen/Standardtrick/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei . Bei einer Folge der Form

mit in einem archimedisch angeordneten Körper und kann man durch einen einfachen Standardtrick den Grenzwert bestimmen. Man multipliziert Zähler und Nenner mit und erhält somit die auf den ersten Blick kompliziertere Darstellung

Nach Fakt  (1) konvergiert der Nenner gegen . da die Summanden bis auf den ersten Summanden Nullfolgen sind. Der Zähler konvergiert bei gegen und bei gegen . Im ersten Fall liegt insgesamt eine Nullfolge vor, im zweiten Fall konvergiert die Folge geben .