Brouwersche Fixpunktsatz/Stetig differenzierbar/Retraktion/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Zur Notationsvereinfachung sei .  Nehmen wir an, dass es eine fixpunktfreie stetig differenzierbare Abbildung geben würde. Dann ist stets

so dass die beiden Punkte eine Gerade definieren. Die Idee ist, mittels dieser Geraden einen (der beiden) Durchstoßungspunkt mit der Sphäre als Bildpunkt einer Retraktion zu nehmen. Mit der Hilfsfunktion

definieren wir eine Abbildung

durch

Dabei ist der Ausdruck unter der Wurzel positiv. Dies ist bei klar und bei liegt ein Punkt auf der Sphäre vor, dessen Verbindungsgerade mit dem Kugelpunkt nicht senkrecht zu ist (der affine Tangentialraum trifft eine Kugel nur in einem Punkt), so dass ist. Da die Quadratwurzel und der Betrag außerhalb des Nullpunktes stetig differenzierbar sind, handelt es sich bei und bei um stetig differenzierbare Abbildungen. Die Abbildung bildet nach Aufgabe die Kugel auf die Sphäre ab und ihre Einschränkung auf die Sphäre ist die Identität. Damit liegt eine stetig differenzierbare Retraktion der Vollkugel auf ihren Rand vor, was nach Fakt nicht sein kann.