Dezimaldarstellung/Cauchy-Folge/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Es sei eine unendliche Zifferndarstellung (oder Dezimalentwicklung) gegeben, wobei wir uns nur um Darstellungen der Form kümmern müssen. Es genügt zu zeigen, dass die zugehörige Folge

eine Cauchy-Folge ist. Aufgrund der Vollständigkeit von besitzt dann die Zifferndarstellung einen eindeutigen Grenzwert, und dieser ist die durch die Zifferndarstellung bestimmte Zahl. Dazu betrachten wir die Differenz (für )

wobei wir in der letzten Abschätzung verwendet haben, dass die Ziffern kleiner als sind. Nach Aufgabe gilt für die Summe rechts die Gleichheit

Bei gegebenem haben wir also für jedes die Abschätzung

Zu einem beliebig vorgegebem finden wir zuerst ein mit

und für gilt dann