Differenzierbar/D offen K/Umkehrfunktion/Fakt/Beweis
Zur Navigation springen
Zur Suche springen
Beweis
Wir betrachten den Differenzenquotienten
und müssen zeigen, dass der Limes für existiert und den behaupteten Wert annimmt. Es sei dazu eine Folge in , die gegen konvergiert. Aufgrund der vorausgesetzten Stetigkeit von konvergiert auch die Folge mit den Gliedern gegen . Wegen der Bijektivität ist für alle . Damit ist
wobei die rechte Seite nach Voraussetzung existiert.