Beweis
Es sei zunächst konvex und seien zwei Punkte
aus gegeben. Es sei
die lineare Funktion, die und verbindet. Aufgrund der Konvexität ist
für alle
.
Für die Differenzenquotienten gilt daher
Durch Übergang zu den Limiten für bzw. folgt
-
Es sei nun als nicht konvex vorausgesetzt und seien zwei Punkte
aus mit der Eigenschaft gegeben, dass die verbindende Gerade von
und
nicht vollständig oberhalb des Graphen von verläuft. Es gibt also ein
mit
,
wobei wieder die verbindende lineare Funktion ist. Durch Übergang zu können wir
und
annehmen. Nach dem
Mittelwertsatz
gibt es Punkte
und
mit
und
,
sodass nicht wachsend ist.