Zum Inhalt springen

Differenzierbarkeit/K/Partiell differenzierbare Abbildung/Definition

Aus Wikiversity
Partiell differenzierbar in einem Punkt

Es sei offen und sei eine Abbildung durch

gegeben. Es sei ein Punkt. Für fixierte Indizes und betrachten wir die Abbildung

(wobei ein reelles Intervall (bzw. eine offene Kreisscheibe) mit

derart sei, dass gilt) als Funktion in einer Variablen, wobei die übrigen Variablen , , fixiert seien. Ist diese Funktion in differenzierbar, so heißt partiell differenzierbar in bezüglich der Koordinate . Man bezeichnet diese Ableitung (welche ein Element in ist) mit

und nennt sie die -te partielle Ableitung von in .

Die Abbildung heißt partiell differenzierbar im Punkt , falls für alle und die partiellen Ableitungen in existieren. Die -te partielle Ableitung von in wird mit

bezeichnet.