Partiell differenzierbar
Es sei
offen und sei eine Abbildung
durch
-
gegeben. Es sei
ein Punkt. Für fixierte Indizes und betrachten wir die Abbildung
-
(wobei
ein reelles Intervall mit
derart sei, dass
gilt)
als Funktion in einer Variablen, wobei die übrigen Variablen
, ,
fixiert seien. Ist diese Funktion in
differenzierbar,
so heißt partiell differenzierbar in bezüglich der Koordinate . Man bezeichnet diese Ableitung
(welche ein Element in ist)
mit
-
und nennt sie die -te partielle Ableitung von in .
Die Abbildung heißt partiell differenzierbar im Punkt , falls für alle und die partiellen Ableitungen in existieren. Die -te partielle Ableitung von in wird mit
-
bezeichnet.