Zum Inhalt springen

Ebene projektive Kurve/Abbildung nach P^1 über Projektion von einem Punkt/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei ein Punkt, der nicht auf der Kurve liegt. Einen solchen Punkt gibt es, da der Körper insbesondere unendlich ist. Wir betrachten die Projektion weg von , die insgesamt einen Morphismus

induziert. Die Faser dieses Morphismus über einem Punkt (der eine Richtung in repräsentiert) besteht genau aus den Punkten der Kurve, die auf der durch definierten Geraden

liegen. Daher wird die Faser über auf beschrieben, indem man in der Kurvengleichung mittels der Geradengleichung eine Variable eliminiert. Das Ergebnis ist ein homogenes Polynom in zwei Variablen vom Grad , das nicht ist, denn sonst wäre ein Punkt der Kurve. Da wir über einem algebraisch abgeschlossenen Körper sind, besitzt dieses Polynom mindestens eine und höchstens Nullstellen, die alle von verschieden sind. Dies ergibt die Surjektivität und die Abschätzung für die Faser.