Elementare Mathematik 1/Gemischte Definitionsabfrage/15/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Man sagt, dass die Menge eine Teilmenge von ist, wenn jedes Element von auch ein Element von ist.
  2. Die Abbildung

    die jedes Element auf das eindeutig bestimmte Element mit abbildet, heißt die Umkehrabbildung zu .

  3. Es sei eine Menge mit einer Verknüpfung

    gegeben. Dann heißt ein Element neutrales Element der Verknüpfung, wenn für alle die Gleichheit

    gilt.

  4. Eine Gruppe heißt kommutativ, wenn

    für alle gilt.

  5. Ein Körper heißt angeordnet, wenn es eine totale Ordnung“ auf gibt, die die beiden Eigenschaften
    1. Aus folgt (für beliebige )
    2. Aus und folgt (für beliebige )

    erfüllt.

  6. Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

Zur gelösten Aufgabe