Elementare und algebraische Zahlentheorie/16/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 0 }
\renewcommand{\afuenf}{ 0 }
\renewcommand{\asechs}{ 1 }
\renewcommand{\asieben}{ 0 }
\renewcommand{\aacht}{ 4 }
\renewcommand{\aneun}{ 4 }
\renewcommand{\azehn}{ 3 }
\renewcommand{\aelf}{ 0 }
\renewcommand{\azwoelf}{ 4 }
\renewcommand{\adreizehn}{ 0 }
\renewcommand{\avierzehn}{ 0 }
\renewcommand{\afuenfzehn}{ 0 }
\renewcommand{\asechzehn}{ 0 }
\renewcommand{\asiebzehn}{ 24 }
\renewcommand{\aachtzehn}{ }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellesechzehn
\klausurnote
\newpage
\setcounter{section}{K}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Ein \stichwort {euklidischer Bereich} {} $R$.
}{Ein
\stichwort {Ideal} {}
\mathl{{\mathfrak a} \subseteq R}{} in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$.
}{Das \stichwort {Legendre-Symbol} {.}
}{Die \stichwort {Riemannsche Zetafunktion} {.}
}{Eine \stichwort {Mersennesche Primzahl} {.}
}{Eine \stichwort {Sophie-Germain-Primzahl} {.} }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Chinesische Restsatz} {} für $\Z$.}{Das \stichwort {quadratische Reziprozitätsgesetz} {} für ungerade Primzahlen.}{Der \stichwort {Primzahlsatz} {.}}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Bestätige die folgende Identität.
\mavergleichskettedisp
{\vergleichskette
{ 3^5 + 11^4
}
{ =} { 122^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabegibtloesung
{1}
{
Bestimme die
\definitionsverweis {Primfaktorzerlegung}{}{}
von
\mathdisp {\binom { 15 } { 5 }} { . }
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabegibtloesung
{4 (2+2)}
{
Zu einer positiven natürlichen Zahl $n$ sei $a_n$ das
\definitionsverweis {kleinste gemeinsame Vielfache}{}{}
der Zahlen
\mathl{1,2,3 , \ldots , n}{.}
\aufzaehlungzwei {Bestimme $a_n$ für
\mavergleichskette
{\vergleichskette
{ n
}
{ = }{ 1,2,3,4,5,6,7,8,9
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} {Was ist die kleinste Zahl $n$ mit
\mavergleichskettedisp
{\vergleichskette
{a_n
}
{ =} {a_{n+1}
}
{ =} {a_{n+2}
}
{ =} {a_{n+3}
}
{ } {
}
}
{}{}{?}
}
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es seien \mathkor {} {x} {und} {y} {} natürliche Zahlen, die man beide als eine Summe von zwei Quadratzahlen darstellen kann. Zeige, dass man auch das Produkt $xy$ als Summe von zwei Quadratzahlen darstellen kann.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Bestimme das inverse Element zu
\mathl{\overline{55}}{} in
\mathl{\Z/(93)}{.}
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei
\mavergleichskette
{\vergleichskette
{ z
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart, dass es ein Polynom
\mavergleichskette
{\vergleichskette
{ P
}
{ \neq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit rationalen Koeffizienten und mit
\mavergleichskettedisp
{\vergleichskette
{P(z)
}
{ =} {0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gibt. Zeige, dass man
\mavergleichskettedisp
{\vergleichskette
{z
}
{ =} { { \frac{ u }{ v } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
schreiben kann, wobei $v$ eine positive natürliche Zahl ist und es zu $u$ ein normiertes Polynom $Q$ mit ganzzahligen Koeffizienten und mit
\mavergleichskettedisp
{\vergleichskette
{Q(u)
}
{ =} {0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}