Endliche Symmetriegruppen/Halbachsensysteme/Gruppenaktion/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien. Jedes Element , , ist eine Drehung um eine eindeutig bestimmte Drehachse . Insbesondere sind an einer endlichen Symmetriegruppe nur endlich viele Drehachsen beteiligt. Jedes Gruppenelement bewirkt dann eine Permutation der Drehachsenmenge, und diese Bedingung schränkt die möglichen Gruppen wesentlich ein. Eine Drehachse zerfällt in zwei Halbachsen, und es ist sinnvoll, die Wirkungsweise der Gruppe auf diesen Halbachsen zu untersuchen.

Würfel und Oktaeder besitzen
isomorphe Symmetriegruppen.


Bei einem Würfel gibt es drei verschiedene Arten von Drehachsen: Es gibt drei Drehachsen, die durch die Seitenmittelpunkte gegeben sind, vier Drehachsen, die durch die Eckpunkte gegeben sind und sechs Drehachsen, die durch die Kantenmittelpunkte gegeben sind. Betrachtet man alle Durchstoßungspunkte dieser Achsen mit der Sphäre vom Radius eins, so ergeben sich Punkte. Diese Punkte entsprechen den Halbachsen. Dabei gibt es zu je zwei Eckpunkten (bzw. den zugehörigen Durchstoßungspunkten) (mindestens) eine Würfelbewegung, die sie ineinander überführt, ebenso zu je zwei Kantenmittelpunkten und zu je zwei Seitenmittelpunkten. Jede Bewegung permutiert diese charakteristischen Punkte. Wenn man eine Achse (oder einen Durchstoßungspunkt) fixiert, so kann man die Menge der Bewegungen betrachten, die diese Achse als Drehachse haben. Es kann natürlich auch die Achse zwar auf sich selbst abgebildet werden, aber nicht fix sein. Dann werden die gegenüberliegenden Durchstoßungspunkte ineinander überführt.


Definition  

Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien im . Dann nennt man jede Gerade durch den Nullpunkt, die als Drehachse eines Elementes auftritt, eine Achse von . Die Halbgeraden dieser Drehachsen nennt man die Halbachsen der Gruppe und die Gesamtmenge dieser Halbachsen nennen wir das zu gehörige Halbachsensystem. Es wird mit bezeichnet. Zwei Halbachsen heißen äquivalent, wenn es ein mit gibt. Die Äquivalenzklassen zu dieser Äquivalenzrelation nennt man Halbachsenklassen.

Da jede von verschiedene Drehung genau eine Drehachse hat, ist das Halbachsensystem zu einer endlichen Symmetriegruppe endlich (und zwar ist die Anzahl maximal gleich ). Es liegt eine Gruppenoperation von auf durch vor. Die in obigen Definition erwähnten Äquivalenzklassen sind die Bahnen dieser Operation.

Beispiel

Beim Würfel werden die Halbachsen durch die Eckpunkte, die Seitenmittelpunkte und die Kantenmittelpunkte repräsentiert. Diese drei Arten bilden dann auch die Äquivalenzklassen, also die Halbachsenklassen. Der Vergleich mit dem Oktaeder zeigt, dass die Sprechweise mit den Halbachsen für die Bewegungsgruppe als solche angemessener ist als die Sprechweise mit Ecken, Kanten, Mittelpunkten.


Beispiel

Bei einem Tetraeder gibt es vier Eck-Seitenmittelpunkt-Achsen und vier Kantenmittelpunktachsen. Die Kantenmittelpunkthalbachsen sind dabei alle untereinander äquivalent, während die zuerst genannten Achsen in zwei Halbachsenklassen zerfallen, nämlich die Eckhalbachsen und die Seitenhalbachsen.

An diesem Beispiel sieht man auch, dass die beiden durch eine Drehachse gegebenen Halbachsen nicht zueinander äquivalent sein müssen.