Beweis
Eine komplex-lineare Abbildung ist auch reell-linear, und die euklidische Metrik hängt nur von der reellen Struktur ab. Wir können also
annehmen. Aufgrund von
Fakt
können wir
annehmen. Die Abbildung sei durch
-
mit
gegeben. Die Nullabbildung ist konstant und daher stetig, also sei
.
Es sei
und ein
vorgegeben. Für alle
mit
ist insbesondere
für alle und daher ist