Zum Inhalt springen

Gitter/Komplexe Zahlen/Streckungsäquivalent/Vertretung in oberer Halbebene/Fakt/Beweis

Aus Wikiversity
Beweis

Sei . Da eine reelle Basis bilden, ist insbesondere . Mit erhält man das streckungsäquivalente Gitter

Sei . Diese Zahl ist nicht reell, da andernfalls eine reelle lineare Abhängigkeit zwischen und vorliegen würde. Also besitzt einen imaginären Anteil. Wenn dieser in der unteren Halbebene liegt, so ersetzen wir durch und erhalten eine Basis mit den verlangten Eigenschaften.