Gruppenhomomorphismus/Homomorphiesatz/Restklassengruppen von Z/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir betrachten die beiden surjektiven Gruppenhomomorphismen

und

Es ist

Daher gibt es nach dem Homomorphiesatz einen eindeutig bestimmten Gruppenhomomorphismus

der mit den Restabbildungen verträglich ist. Dieser bildet den Rest der Zahl bei Division durch auf den Rest bei Division durch ab. Der Satz beinhaltet insbesondere die Aussage, dass dieser letztere Rest allein vom ersten Rest abhängt, nicht von der Zahl selbst.

Wenn man hingegen

und

betrachtet, so ist

und es gibt keine natürliche Abbildung

Beispielsweise haben , die alle modulo den Rest haben, modulo die Reste .