Gruppenhomomorphismus/Homomorphiesatz/Surjektiv und Kern/Fakt/Beweis
Zur Navigation springen
Zur Suche springen
Beweis
Wir zeigen zuerst die Eindeutigkeit. Für jedes Element gibt es mindestens ein mit . Wegen der Kommutativität des Diagramms muss
gelten. Das bedeutet, dass es maximal ein geben kann.
Wir haben zu zeigen, dass durch diese Bedingung eine wohldefinierte Abbildung gegeben ist. Es seien also
zwei Urbilder von . Dann ist
und somit ist . Daher ist . Die Abbildung ist also wohldefiniert. Seien und seien Urbilder davon. Dann ist ein Urbild von und daher ist
D.h. ist ein Gruppenhomomorphismus.