a) Die Anzahl ist stets eine nichtnegative Zahl. Zwei Tupel sind genau dann gleich, wenn jede ihrer Komponenten übereinstimmt. Dies ist genau dann der Fall, wenn ist. Da die (Un-)gleichheit symmetrisch ist, ist . Zum Beweis der Dreiecksungleichung seien vorgegeben. Wenn und in der -ten Komponente nicht übereinstimmen, so ist oder . Es ist also
-
und daher
b) Die beiden Tupel
und
unterscheiden sich an der ersten und der vierten Stelle, also ist der Abstand .
c) Die Werte der Metrik sind ganzzahlig, und in der offenen Ballumgebung mit Radius liegen die Elemente, die vom Mittelpunkt einen Abstand haben. Der Abstand zum Mittelpunkt muss also
oder
sein. Die Elemente darin sind daher
-