Zum Inhalt springen

Integres affines Schema/Faktoriell/Picardgruppe/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei ein Ideal, das invertierbar sei, und sei

eine offene Überdeckung derart, dass ein Hauptideal ist. Es ist insbesondere zu jedem Primelement das Ideal ein Hauptideal und damit von der Form , da ein diskreter Bewertungsring ist. Dabei sind die nur für endlich viele Primelemente von verschieden. Zu einem Element , . gibt es nämlich nur endlich viele Primteiler und für die anderen Primelemente ist eine Einheit in . Wir behaupten, dass mit dem von erzeugten Hauptideal übereinstimmt. Da man die Gleichheit von Idealen lokal zu einer Überdeckung testen kann, können wir in argumentieren. Die Aussage folgt dann aus Fakt.