Invariantenring/Endliche Gruppe/Kein Charakter in den Einheiten/Faktoriell/Fakt/Beweis

Aus Wikiversity
Beweis

Wir zeigen, dass , , eine im Wesentlichen eindeutige Zerlegung in irreduzible Faktoren besitzt. Sei

die Zerlegung in in irreduzible Faktoren, wobei die paarweise nicht (in ) assoziiert seien. Für jedes ist dann auch

Wegen der Faktorialität von muss diese Zerlegung mit der ursprünglichen Faktorzerlegung übereinstimmen, d.h. zu jedem gibt es ein und eine Einheit mit

Es sei

die disjunkte Zerlegung der Indexmenge, bei der zwei Indizes in der gleichen Teilmenge landen, wenn es ein gibt derart, dass

und assoziiert sind. Wir setzen

Insbesondere ist dann

Es ist

mit einer (von abhängigen) Einheit

An dieser letzten Darstellung sieht man, dass die Zuordnung , , ein Charakter ist. Nach Voraussetzung ist dieser also trivial, und damit sind die invariant. Somit ist

eine Faktorzerlegung in . Die sind dabei irreduzibel in , da eine Faktorzerlegung

sofort zu einer Zerlegung von in Teilprodukte führt, die aber wegend er Wahl der nicht invariant sein können. Wenn eine beliebige Zerlegung von in irreduzible Faktoren ist, so sind die , aufgefasst in , Produkte gewisser , und wegen der Wahl der wird sogar von einem (in und in ) geteilt. Es liegt also eine eindeutige Zerlegung in irreduzible Faktoren vor und damit ist nach Fakt  (2) faktoriell.