# Kettenregel/x^2-1 durch x und y^2 durch y-1/Bestätige/Aufgabe/Lösung

Zur Navigation springen Zur Suche springen

a) Nach der Quotientenregel ist

${\displaystyle {}f'(x)={\frac {2xx-(x^{2}-1)}{x^{2}}}={\frac {x^{2}+1}{x^{2}}}\,}$

und

${\displaystyle {}g'(y)={\frac {2y(y-1)-y^{2}}{(y-1)^{2}}}={\frac {y^{2}-2y}{y^{2}-2y+1}}\,.}$

b) Es ist

{\displaystyle {}{\begin{aligned}g(f(x))&={\frac {{\left({\frac {x^{2}-1}{x}}\right)}^{2}}{{\frac {x^{2}-1}{x}}-1}}\\&={\frac {{\left(x^{2}-1\right)}^{2}}{x(x^{2}-1)-x^{2}}}\\&={\frac {x^{4}-2x^{2}+1}{x^{3}-x^{2}-x}}.\end{aligned}}}

c) Die Ableitung von

${\displaystyle {}h(x)={\frac {x^{4}-2x^{2}+1}{x^{3}-x^{2}-x}}\,}$

ist

{\displaystyle {}{\begin{aligned}h'(x)&={\frac {{\left(4x^{3}-4x\right)}{\left(x^{3}-x^{2}-x\right)}-{\left(x^{4}-2x^{2}+1\right)}{\left(3x^{2}-2x-1\right)}}{{\left(x^{3}-x^{2}-x\right)}^{2}}}\\&={\frac {4x^{6}-4x^{5}-4x^{4}-4x^{4}+4x^{3}+4x^{2}-{\left(3x^{6}-2x^{5}-x^{4}-6x^{4}+4x^{3}+2x^{2}+3x^{2}-2x-1\right)}}{x^{2}{\left(x^{2}-x-1\right)}^{2}}}\\&={\frac {x^{6}-2x^{5}-x^{4}-x^{2}+2x+1}{x^{2}{\left(x^{4}+x^{2}+1-2x^{3}-2x^{2}+2x\right)}}}\\&={\frac {x^{6}-2x^{5}-x^{4}-x^{2}+2x+1}{x^{6}-2x^{5}-x^{4}+2x^{3}+x^{2}}}.\end{aligned}}}

d) Es ist

{\displaystyle {}{\begin{aligned}g'(f(x))f'(x)&={\frac {{\left({\frac {x^{2}-1}{x}}\right)}^{2}-2{\frac {x^{2}-1}{x}}}{{\left({\frac {x^{2}-1}{x}}\right)}^{2}-2{\frac {x^{2}-1}{x}}+1}}\cdot {\frac {x^{2}+1}{x^{2}}}\\&={\frac {{\left(x^{2}-1\right)}^{2}-2{\left(x^{2}-1\right)}x}{{\left(x^{2}-1\right)}^{2}-2{\left(x^{2}-1\right)}x+x^{2}}}\cdot {\frac {x^{2}+1}{x^{2}}}\\&={\frac {x^{4}-2x^{2}+1-2x^{3}+2x}{x^{4}-2x^{2}+1-2x^{3}+2x+x^{2}}}\cdot {\frac {x^{2}+1}{x^{2}}}\\&={\frac {x^{4}-2x^{3}-2x^{2}+2x+1}{x^{4}-2x^{3}-x^{2}+2x+1}}\cdot {\frac {x^{2}+1}{x^{2}}}\\&={\frac {x^{6}-2x^{5}-x^{4}-x^{2}+2x+1}{x^{6}-2x^{5}-x^{4}+2x^{3}+x^{2}}}.\end{aligned}}}