Zum Inhalt springen

Kommutative Ringtheorie/Quotientenkörper/Einführung/Textabschnitt

Aus Wikiversity


Zu einem Integritätsbereich ist der Quotientenkörper als die Menge der formalen Brüche

mit natürlichen Identifizierungen und Operationen definiert.

Mit natürlichen Identifikationen meinen wir die (Erweiterungs- bzw. Kürzungs)-Regel

(). Für die Operationen gelten

(auf einen Hauptnenner bringen) und

Mit diesen Operationen liegt in der Tat, wie man schnell überprüft, ein kommutativer Ring vor. Und zwar handelt es sich um einen Körper, denn für jedes Element

ist das Inverse.

Der Integritätsbereich findet sich in über die Elemente wieder. Diese natürliche Inklusion

ist ein Ringhomomorphismus. Das Element hat bei das Inverse . Zwischen und gibt es keinen weiteren Körper. Ein solcher muss nämlich zu das (eindeutig bestimmte) Inverse enthalten und dann aber auch alle Produkte .