Komplexe Dreierpotenz/Reell/Diffeomorphismus/Große Menge/Aufgabe/Kommentar

Aus Wikiversity

Wir fassen die Abbildung als reelle Abbildung auf. Hier bietet es sich an, mit der Polardarstellung der komplexen Zahlen zu arbeiten, also mit und . Über den komplexen Zahl ist das Potenzieren zum Exponenten nicht injektiv (wohl aber surjektiv). Für

gilt zum Beispiel

Wenn wir die Abbildung auf eine offene Teilmenge einschränken wollen, auf der sie bijektiv ist, können folglich keine Punkte enthalten sein, die sich genau um eine -Grad-Drehung unterscheiden. Beispielsweise können wir als offene Menge die Punkte mit und wählen, aber es sind viele andere Definitionsgebiete denkbar. Auf diesem Gebiet ist die Abbildung nach den vorherigen Überlegungen injektiv und folglich bijektiv. Mit können wir die Umkehrabbildung durch

angeben, sodass die Umkehrabbildung stetig ist. Die auf eingeschränkte Abbildung könnten wir daher auch als -Diffeomorphismus bezeichnen.

Der Begriff Diffeomorphismus selbst steht für -Diffeomorphismus. Wir müssen also noch begründen, dass die eingeschränkte Abbildung auf und deren Umkehrung differenzierbar sind – zum Beispiel durch Betrachtung der Jacobi-Matrix.
Zur kommentierten Aufgabe