Zum Inhalt springen

Komplexe Potenzreihen/Summe/Produkt/Fakt/Beweis/Aufgabe

Aus Wikiversity

Es seien und Potenzreihen mit positiven Konvergenzradien, deren Minimum sei. Zeige die folgenden Aussagen.

  1. Die Potenzreihe mit ist konvergent auf und stellt dort die Summenfunktion dar.
  2. Die Potenzreihe mit ist konvergent auf und stellt dort die Produktfunktion dar.