Zum Inhalt springen

Konstruktion von Q/Äquivalenzklassen/Aufgabe/Lösung

Aus Wikiversity



a) Wegen der Kommutativität der Multiplikation in ist , woraus die Reflexivität folgt. Zur Symmetrie sei , also . Dann ist auch , was

bedeutet. Zur Transitivität sei
also
Aus diesen beiden Gleichungen ergibt sich
Da

ist, folgt daraus , was bedeutet.

b) Es sei vorgegeben. Wegen ist oder . Bei sind wir fertig, da zu sich selbst äquivalent ist. Bei betrachten wir . Der

zweite Eintrag ist positiv, und wegen
sind und äquivalent zueinander.


c) Es seien vorgegeben und . Das bedeutet

bzw. , also


d) Wir setzen
Wegen ist auch

. Zur Wohldefiniertheit dieser Verknüpfung sei

also

Wir behaupten
Dies folgt aus

Die Assoziativität folgt aus

Wegen
(und ebenso

in der anderen Reihenfolge) ist das neutrale Element.

Wir behaupten, dass zu das inverse Element durch gegeben ist. Dies folgt aus

wobei die letzte Gleichung sich aus ergibt (ebenso in der anderen Reihenfolge).

Schließlich ist für