Kurs:Algebraische Kurven/5/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{. 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 5 }

\renewcommand{\avier}{ 6 }

\renewcommand{\afuenf}{ 6 }

\renewcommand{\asechs}{ 6 }

\renewcommand{\asieben}{ 6 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 5 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 3 }

\renewcommand{\avierzehn}{ 7 }

\renewcommand{\afuenfzehn}{ 64 }

\renewcommand{\asechzehn}{ }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellevierzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {affin-algebraische} {} Menge.

}{Eine \stichwort {rationale Parametrisierung} {} einer affin-algebraischen Kurve
\mavergleichskette
{\vergleichskette
{V(F) }
{ \subseteq }{ {\mathbb A}^{2}_{} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Ein \stichwort {zusammenhängender} {} Ring $R$.

}{Ein \stichwort {ganzes Element} {}
\mathl{x \in S}{} bei einer Ringerweiterung
\mavergleichskette
{\vergleichskette
{R }
{ \subseteq }{S }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Ein \stichwort {glatter} {} Punkt $P$ auf einer ebenen algebraischen Kurve
\mavergleichskette
{\vergleichskette
{ C }
{ = }{V(F) }
{ \subseteq }{ {\mathbb A}^{2}_{K} }
{ }{ }
{ }{ }
} {}{}{.}

}{Ein \stichwort {homogenes} {} Ideal
\mavergleichskette
{\vergleichskette
{ {\mathfrak a} }
{ \subseteq }{ K[X_1 , \ldots , X_n] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über den Schnitt einer ebenen Kurve mit einer Geraden.}{Der Satz über die Beziehung von Radikalen und affin-algebraischen Mengen.}{Der Satz über die Summe der Schnittmultiplizitäten.}

}
{} {}




\inputaufgabegibtloesung
{5 (2+2+1)}
{

Es seien $a,b \geq 2$ und sei $n=ab$.

a) Zeige, dass die beiden Polynome $X^a-1$ und $X^b-1$ Teiler des Polynoms $X^n-1$ sind.


b) Es sei $a \neq b$. Ist $(X^a-1)(X^b-1)$ stets ein Teiler von $X^n-1$?


c) Man gebe drei Primfaktoren von $2^{30} -1$ an.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Zeige, dass die Neilsche Parabel
\mavergleichskettedisp
{\vergleichskette
{ C }
{ =} {V { \left( Y^2-X^3 \right) } }
{ \subseteq} { {\mathbb A}^{2}_{{\mathbb C}} }
{ } { }
{ } { }
} {}{}{} jede Gerade durch den Punkt
\mavergleichskette
{\vergleichskette
{P }
{ = }{ (1,1) }
{ \in }{C }
{ }{ }
{ }{ }
} {}{}{} in mindestens einem weiteren Punkt trifft.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es seien \mathkor {} {I} {und} {J} {} \definitionsverweis {Ideale}{}{} in einem \definitionsverweis {kommutativen Ring}{}{} $R$ und sei
\mathl{n \in \N}{.} Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{(I+J)^n }
{ =} { I^n + I^{n-1}J+ I^{n-2}J^2 + \cdots + I^2J^{n-2} + IJ^{n-1} +J^n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $K$ ein Körper und seien $F,G \in K[X,Y]$ zwei nichtkonstante Polynome ohne gemeinsamen nichtkonstanten Teiler. Zeige, dass der Durchschnitt $V(F) \cap V(G)$ nur endlich viele Punkte besitzt.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Bestimme für die Abbildung \maabbeledisp {} { {\mathbb A}^{1}_{K} \setminus \{0\}} { {\mathbb A}^{2}_{K} } {t} { \left( { \frac{ t^2+t+1 }{ t^2 } } , \, { \frac{ t-1 }{ t^2 } } \right) } {,} eine algebraische Gleichung der Bildkurve.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Wir betrachten das \definitionsverweis {mechanische System}{}{,} das durch den Einheitskreis und die dazu tangentiale Gerade durch
\mathl{(0,1)}{} mit dem Koppelungsabstand
\mathl{d=2}{} definiert ist. Zeige, dass man dieses System mit zwei Variablen beschreiben kann.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein Körper und $R=K[X_1, \ldots , X_n]/ {\mathfrak a}$ eine endlich erzeugte $K$-Algebra. Stifte eine Bijektion zwischen
\mathdisp {K\!-\!\operatorname{Spek}\, { \left( R \right) } \text{ und } V({\mathfrak a}) \subseteq { {\mathbb A}_{ K }^{ n } }} { . }

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz für numerische Monoide für große $n$.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei
\mathl{n \in \N_+}{.} Beschreibe die zum \definitionsverweis {Restklassenhomomorphismus}{}{} \zusatzklammer {als Monoidhomomorphismus} {} {} \maabbdisp {} {\Z} { \Z/(n) } {} gehörige \definitionsverweis {Spektrumsabbildung}{}{} zum Körper ${\mathbb C}$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme für die ebene algebraische Kurve
\mathdisp {V { \left( X^3+Y^2-XY+X \right) }} { }
eine nichtkonstante Potenzreihenlösung $X=F(Y)$ im Nullpunkt bis zum sechsten Glied.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme, ob die \definitionsverweis {ebene projektive Kurve}{}{}
\mavergleichskettedisp
{\vergleichskette
{ V_+ { \left( X^4+YZ^3+Z^4 \right) } }
{ \subset} { {\mathbb P}^{2}_{{\mathbb C}} }
{ } { }
{ } { }
{ } { }
} {}{}{} \definitionsverweis {glatt}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Es sei $K={\mathbb C}$ und betrachte die beiden ebenen algebraischen Kurven
\mathdisp {C=V { \left( X-Y^2 \right) } \text{ und } D=V { \left( Y^2-X^5 \right) }} { . }
Bestimme die Schnittpunkte der beiden Kurven in der affinen Ebene und bestimme jeweils die Schnittmultiplizität. Bestimme auch die unendlich fernen Punkte der beiden Kurven \zusatzklammer {also die zusätzlichen Punkte auf den projektiven Abschlüssen $\bar{C}$ und $\bar{D}$} {} {} und überprüfe damit die Schnittpunkte im Unendlichen. Bestätige abschließend, dass der Satz von Bezout in diesem Beispiel erfüllt ist.

}
{} {}