Kurs:Algebraische Kurven/5/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{. 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 5 }
\renewcommand{\avier}{ 6 }
\renewcommand{\afuenf}{ 6 }
\renewcommand{\asechs}{ 6 }
\renewcommand{\asieben}{ 6 }
\renewcommand{\aacht}{ 4 }
\renewcommand{\aneun}{ 4 }
\renewcommand{\azehn}{ 5 }
\renewcommand{\aelf}{ 2 }
\renewcommand{\azwoelf}{ 4 }
\renewcommand{\adreizehn}{ 3 }
\renewcommand{\avierzehn}{ 7 }
\renewcommand{\afuenfzehn}{ 64 }
\renewcommand{\asechzehn}{ }
\renewcommand{\asiebzehn}{ }
\renewcommand{\aachtzehn}{ }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellevierzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {affin-algebraische} {} Menge.
}{Eine
\stichwort {rationale Parametrisierung} {}
einer affin-algebraischen Kurve
\mavergleichskette
{\vergleichskette
{V(F)
}
{ \subseteq }{ {\mathbb A}^{2}_{}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Ein \stichwort {zusammenhängender} {} Ring $R$.
}{Ein
\stichwort {ganzes Element} {}
\mathl{x \in S}{} bei einer Ringerweiterung
\mavergleichskette
{\vergleichskette
{R
}
{ \subseteq }{S
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Ein
\stichwort {glatter} {}
Punkt $P$ auf einer ebenen algebraischen Kurve
\mavergleichskette
{\vergleichskette
{ C
}
{ = }{V(F)
}
{ \subseteq }{ {\mathbb A}^{2}_{K}
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Ein
\stichwort {homogenes} {}
Ideal
\mavergleichskette
{\vergleichskette
{ {\mathfrak a}
}
{ \subseteq }{ K[X_1 , \ldots , X_n]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über den Schnitt einer ebenen Kurve mit einer Geraden.}{Der Satz über die Beziehung von Radikalen und affin-algebraischen Mengen.}{Der Satz über die Summe der Schnittmultiplizitäten.}
}
{} {}
\inputaufgabegibtloesung
{5 (2+2+1)}
{
Es seien
\mavergleichskette
{\vergleichskette
{ a,b
}
{ \geq }{ 2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und sei
\mavergleichskette
{\vergleichskette
{ n
}
{ = }{ ab
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
a) Zeige, dass die beiden Polynome $X^a-1$ und $X^b-1$ Teiler des Polynoms $X^n-1$ sind.
b) Es sei
\mavergleichskette
{\vergleichskette
{ a
}
{ \neq }{ b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Ist $(X^a-1)(X^b-1)$ stets ein Teiler von $X^n-1$
c) Man gebe drei Primfaktoren von $2^{30} -1$ an.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Zeige, dass die Neilsche Parabel
\mavergleichskettedisp
{\vergleichskette
{ C
}
{ =} {V { \left( Y^2-X^3 \right) }
}
{ \subseteq} { {\mathbb A}^{2}_{{\mathbb C}}
}
{ } {
}
{ } {
}
}
{}{}{}
jede Gerade durch den Punkt
\mavergleichskette
{\vergleichskette
{P
}
{ = }{ (1,1)
}
{ \in }{C
}
{ }{
}
{ }{
}
}
{}{}{}
in mindestens einem weiteren Punkt trifft.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Es seien
\mathkor {} {I} {und} {J} {}
\definitionsverweis {Ideale}{}{}
in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$ und sei
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ (I+J)^n
}
{ =} { I^n + I^{n-1}J+ I^{n-2}J^2 + \cdots + I^2J^{n-2} + IJ^{n-1} +J^n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{6}
{
Es sei $K$ ein Körper und seien $F,G \in K[X,Y]$ zwei nichtkonstante Polynome ohne gemeinsamen nichtkonstanten Teiler. Zeige, dass der Durchschnitt $V(F) \cap V(G)$ nur endlich viele Punkte besitzt.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Bestimme für die Abbildung \maabbeledisp {} { {\mathbb A}^{1}_{K} \setminus \{0\}} { {\mathbb A}^{2}_{K} } {t} { \left( { \frac{ t^2+t+1 }{ t^2 } } , \, { \frac{ t-1 }{ t^2 } } \right) } {,} eine algebraische Gleichung der Bildkurve.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Wir betrachten das
\definitionsverweis {mechanische System}{}{,}
das durch den Einheitskreis und die dazu tangentiale Gerade durch
\mathl{(0,1)}{} mit dem Koppelungsabstand
\mathl{d=2}{} definiert ist. Zeige, dass man dieses System mit zwei Variablen beschreiben kann.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei $K$ ein Körper und $R=K[X_1, \ldots , X_n]/ {\mathfrak a}$ eine endlich erzeugte $K$-Algebra. Stifte eine Bijektion zwischen
\mathdisp {K\!-\!\operatorname{Spek}\, { \left( R \right) } \text{ und } V({\mathfrak a}) \subseteq { {\mathbb A}_{ K }^{ n } }} { . }
}
{} {}
\inputaufgabegibtloesung
{5}
{
Beweise den Satz für numerische Monoide für große $n$.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei
\mathl{n \in \N_+}{.} Beschreibe die zum
\definitionsverweis {Restklassenhomomorphismus}{}{}
\zusatzklammer {als Monoidhomomorphismus} {} {}
\maabbdisp {} {\Z} { \Z/(n)
} {}
gehörige
\definitionsverweis {Spektrumsabbildung}{}{}
zum Körper ${\mathbb C}$.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Bestimme für die ebene algebraische Kurve
\mathdisp {V { \left( X^3+Y^2-XY+X \right) }} { }
eine nichtkonstante Potenzreihenlösung $X=F(Y)$ im Nullpunkt bis zum sechsten Glied.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Bestimme, ob die
\definitionsverweis {ebene projektive Kurve}{}{}
\mavergleichskettedisp
{\vergleichskette
{ V_+ { \left( X^4+YZ^3+Z^4 \right) }
}
{ \subset} { {\mathbb P}^{2}_{{\mathbb C}}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
\definitionsverweis {glatt}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{7}
{
Es sei $K={\mathbb C}$ und betrachte die beiden ebenen algebraischen Kurven
\mathdisp {C=V { \left( X-Y^2 \right) } \text{ und } D=V { \left( Y^2-X^5 \right) }} { . }
Bestimme die Schnittpunkte der beiden Kurven in der affinen Ebene und bestimme jeweils die Schnittmultiplizität. Bestimme auch die unendlich fernen Punkte der beiden Kurven
\zusatzklammer {also die zusätzlichen Punkte auf den projektiven Abschlüssen $\bar{C}$ und $\bar{D}$} {} {} und überprüfe damit die Schnittpunkte im Unendlichen. Bestätige abschließend, dass der Satz von Bezout in diesem Beispiel erfüllt ist.
}
{} {}