Kurs:Elementare Algebra/1/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 4 }
\renewcommand{\afuenf}{ 2 }
\renewcommand{\asechs}{ 7 }
\renewcommand{\asieben}{ 3 }
\renewcommand{\aacht}{ 2 }
\renewcommand{\aneun}{ 4 }
\renewcommand{\azehn}{ 4 }
\renewcommand{\aelf}{ 3 }
\renewcommand{\azwoelf}{ 5 }
\renewcommand{\adreizehn}{ 4 }
\renewcommand{\avierzehn}{ 6 }
\renewcommand{\afuenfzehn}{ 1 }
\renewcommand{\asechzehn}{ 3 }
\renewcommand{\asiebzehn}{ 7 }
\renewcommand{\aachtzehn}{ 63 }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellesiebzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Einheit} {} $u$ in einem kommutativen Ring $R$.
}{Eine \stichwort {$n$-te Einheitswurzel} {} $z$ in einem Körper $K$ \zusatzklammer {\mathlk{n \in \N_+}{}} {} {.}
}{Die \stichwort {Charakteristik} {} eines Körpers
\mathl{K}{.}
}{Eine \stichwort {algebraische Zahl} {} $z \in {\mathbb C}$.
}{Der \stichwort {Grad} {} einer endlichen Körpererweiterung
\mathl{K \subseteq L}{.}
}{Ein \stichwort {konstruierbares} {} $n$-Eck \zusatzklammer {\mathlk{n \in \N_+}{}} {} {.} }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze.
\aufzaehlungdrei{Der \stichwort {Satz von Lagrange} {} über die Ordnung eines Gruppenelementes
\mathl{g \in G}{} in einer endlichen Gruppe $G$.}{Die \stichwort {Gradformel} {} für endliche Körpererweiterungen
\mathkor {} {K \subseteq L} {und} {L \subseteq M} {.}}{Der \stichwort {Satz über die Charakterisierung von konstruierbaren n-Ecken} {.}}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei $n$ eine ganze Zahl, von der die folgenden Eigenschaften bekannt sind:
\aufzaehlungfuenf{$n$ ist negativ.
}{$n$ ist ein Vielfaches von $8$, aber nicht von
\mathl{-16}{.}
}{$n$ ist kein Vielfaches von
\mathl{36}{.}
}{$n$ ist ein Vielfaches von $150$, aber nicht von
\mathl{125}{.}
}{In der Primfaktorzerlegung von $n$ gibt es keine Primzahl, die größer als $5$ ist.
}
Was ist $n$?
}
{} {}
\inputaufgabegibtloesung
{4}
{
Bestimme die
\definitionsverweis {Einheiten}{}{}
im Ring
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ K[\Q]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
wobei $K$ ein
\definitionsverweis {Körper}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei $G$ eine \definitionsverweis {kommutative Gruppe}{}{} und \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {surjektiver}{}{} \definitionsverweis {Gruppenhomomorphismus}{}{.} Zeige, dass $H$ ebenfalls kommutativ ist.
}
{} {}
\inputaufgabegibtloesung
{7}
{
Es seien $k$ und $n$ ganze Zahlen. Zeige, dass die folgenden Aussagen äquivalent sind.
\aufzaehlungvier{$k$ teilt $n$.
}{Es ist
\mathl{\Z n \subseteq \Z k}{.}
}{Es gibt einen Ringhomomorphismus
\maabbdisp {} { \Z/(n) } { \Z/(k)
} {.}
}{Es gibt einen surjektiven Gruppenhomomorphismus
\maabbdisp {} { \Z/(n) } { \Z/(k)
} {.}
}
}
{} {}
\inputaufgabegibtloesung
{3 (1.5+1.5)}
{
(a) Bestimme für die Zahlen $3$, $11$ und $13$ modulare Basislösungen, finde also die kleinsten positiven Zahlen, die in
\mathdisp {\Z/(3) \times \Z/(11) \times \Z/(13)} { }
die Restetupel
$(1,0,0),\, (0,1,0)$ und $(0,0,1)$
repräsentieren.
(b) Finde mit den Basislösungen die kleinste positive Lösung $x$ der simultanen Kongruenzen
\mathdisp {x = 2 \!\! \mod 3 , \, \, \, \, x = 5 \!\! \mod 11 \text{ und } x = 6 \!\! \mod 13} { . }
}
{} {}
\inputaufgabegibtloesung
{2}
{
Berechne
\mathl{3^{1457}}{} in
\mathl{{\mathbb Z}/(13)}{.}
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei $p$ eine Primzahl und sei
\mathl{f(x)}{} ein Polynom mit Koeffizienten in
\mathl{\Z/(p)}{} vom Grad
\mathl{d \geq p}{.} Zeige, dass es ein Polynom $g(x)$ mit einem Grad $< p$ derart gibt, dass für alle Elemente
\mathl{a \in \Z/(p)}{} die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ f(a)
}
{ =} {g(a)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Löse das folgende lineare Gleichungssystem über dem Körper
\mavergleichskette
{\vergleichskette
{ K
}
{ = }{ \Q[\sqrt{3}]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{:}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} 2 + \sqrt{3} & - \sqrt{3} \\ { \frac{ 1 }{ 2 } } & - 2 -3 \sqrt{3} \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ =} { \begin{pmatrix} 1- \sqrt{3} \\ 4 -2 \sqrt{3} \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Bestimme eine ganze Zahl
\mathl{n}{} derart, dass die Lösungen der quadratischen Gleichung
\mavergleichskettedisp
{\vergleichskette
{ x^2 +3 x + { \frac{ 7 }{ 3 } }
}
{ =} {0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
in
\mathl{\Q[\sqrt{n}]}{} liegen.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Bestimme die Primfaktorzerlegung des Polynoms $X^6-1$ über den
\definitionsverweis {Körpern}{}{}
\mavergleichskette
{\vergleichskette
{K
}
{ = }{\Q, \R, {\mathbb C}, \Z/(7)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mathl{\Z/(5)}{.}
}
{} {}
\inputaufgabegibtloesung
{4 (1+1+2)}
{
a) Zeige, dass durch
\mavergleichskettedisp
{\vergleichskette
{ K
}
{ =} { \Z/(7) [T]/(T^3-2)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein Körper mit $343$ Elementen gegeben ist.
b) Berechne in $K$ das Produkt $(T^2+2T+4)(2T^2+5)$.
c) Berechne das (multiplikativ) Inverse zu $T+1$.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Beweise die \anfuehrung{Gradformel}{} für eine Kette von \definitionsverweis {endlichen Kör\-pererweiterungen}{}{} $K \subseteq L \subseteq M$.
}
{} {}
\inputaufgabegibtloesung
{1}
{
Erstelle eine Kreisgleichung für den Kreis im $\R^2$ mit Mittelpunkt
\mathl{(-5,5)}{,} der durch den Punkt
\mathl{(-4,-1)}{} läuft.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Beschreibe die wesentlichen mathematischen Schritte, mit denen man beweisen kann, dass die \anfuehrung{Quadratur des Kreises}{} nicht möglich ist.
}
{} {}
\inputaufgabegibtloesung
{7}
{
Aus einer Menge $T \subseteq E$ seien \anfuehrung{wie üblich}{} Geraden und Kreise elementar konstruierbar. Als neue Punkte seien allerdings nur die Durchschnitte von einer Geraden mit einer Geraden und von einer Geraden mit einem Kreis erlaubt
\zusatzklammer {also nicht der Durchschnitt von zwei Kreisen} {} {.}
Bestimme die Menge $M$ der Punkte, die aus der Anfangsmenge
\mathl{\{0,1 \}}{} auf diese Weise konstruierbar ist.
}
{} {}