Zum Inhalt springen

Kurs:Elementare Algebra/21/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 1 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 7 }

\renewcommand{\azwoelf}{ 7 }

\renewcommand{\adreizehn}{ 6 }

\renewcommand{\avierzehn}{ 6 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 3 }

\renewcommand{\asiebzehn}{ 61 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{K}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Ordnung} {} eines Elementes
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einer \definitionsverweis {Gruppe}{}{} $G$.

}{Ein \stichwort {Nichtnullteiler} {} $a$ in einem \definitionsverweis {kommutativen Ring}{}{} $R$.

}{Ein \stichwort {Körper} {} $K$.

}{Die \stichwort {eulersche Funktion} {}
\mathl{\varphi(n)}{} zu
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Der \stichwort {Zerfällungskörper} {} zu einem Polynom
\mathl{F \in K[X]}{} über einem Körper $K$.

}{Eine \stichwort {konstruierbare} {} Zahl
\mathl{z \in {\mathbb C}}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Fundamentalsatz der Algebra} {.}}{Der Satz über die Faktorzerlegung im Quotientenkörper
\mathl{K=Q(R)}{} zu einem faktoriellen Bereich $R$.}{Der Satz über die Winkeldreiteilung.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $n$ eine ganze Zahl, von der die folgenden Eigenschaften bekannt sind: \aufzaehlungfuenf{$n$ ist negativ. }{$n$ ist ein Vielfaches von $8$, aber nicht von
\mathl{-16}{.} }{$n$ ist kein Vielfaches von
\mathl{36}{.} }{$n$ ist ein Vielfaches von $150$, aber nicht von
\mathl{125}{.} }{In der Primfaktorzerlegung von $n$ gibt es keine Primzahl, die größer als $5$ ist. } Was ist $n$?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $n$ eine natürliche Zahl. Wann ist die Zahl
\mathl{n^2-1}{} eine \definitionsverweis {Primzahl}{}{?}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Führe in $\Z/(5)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=X^3+4X^2+3X+4} {und} {T=3X^2+2X+1} {} durch.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme die \definitionsverweis {Einheiten}{}{} im Ring
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ K[\Q] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wobei $K$ ein \definitionsverweis {Körper}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Es sei $G$ eine \definitionsverweis {kommutative Gruppe}{}{} und \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {surjektiver}{}{} \definitionsverweis {Gruppenhomomorphismus}{}{.} Zeige, dass $H$ ebenfalls kommutativ ist.

}
{} {}




\inputaufgabegibtloesung
{3 (1.5+1.5)}
{


a) Bestimme für die Zahlen $3$, $11$ und $13$ modulare Basislösungen, finde also die kleinsten positiven Zahlen, die in
\mathdisp {\Z/(3) \times \Z/(11) \times \Z/(13)} { }
die Restetupel $(1,0,0),\, (0,1,0)$ und $(0,0,1)$ repräsentieren.


b) Finde mit den Basislösungen die kleinste positive Lösung $x$ der simultanen Kongruenzen
\mathdisp {x = 2 \!\! \mod 3 , \, \, \, \, x = 5 \!\! \mod 11 \text{ und } x = 6 \!\! \mod 13} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mavergleichskette
{\vergleichskette
{ p }
{ \in }{ \Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Primzahl und
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass der \definitionsverweis {Restklassenring}{}{} $\Z/(p^n)$ nur die beiden trivialen \definitionsverweis {idempotenten Elemente}{}{} \mathkor {} {0} {und} {1} {} besitzt.

}
{} {}




\inputaufgabegibtloesung
{4 (1+1+2)}
{


a) Zeige, dass durch
\mavergleichskettedisp
{\vergleichskette
{ K }
{ =} { \Z/(7) [T]/(T^3-2) }
{ } { }
{ } { }
{ } { }
} {}{}{} ein Körper mit $343$ Elementen gegeben ist.


b) Berechne in $K$ das Produkt $(T^2+2T+4)(2T^2+5)$.


c) Berechne das (multiplikativ) Inverse zu $T+1$.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Es seien \mathkor {} {I} {und} {J} {} \definitionsverweis {Ideale}{}{} in einem \definitionsverweis {kommutativen Ring}{}{} $R$ und sei
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ (I+J)^n }
{ =} { I^n + I^{n-1}J+ I^{n-2}J^2 + \cdots + I^2J^{n-2} + IJ^{n-1} +J^n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{7 (1+2+4)}
{


a) Zeige, dass
\mathl{X^2+1}{} \definitionsverweis {irreduzibel}{}{} in $\Q[X]$ ist.


b) Zeige, dass
\mathl{X^4+1}{} \definitionsverweis {irreduzibel}{}{} in $\Q[X]$ ist. \zusatzklammer {Tipp: In
\mathl{\R[X]}{} gilt die Zerlegung
\mavergleichskette
{\vergleichskette
{X^4+1 }
{ = }{ { \left( X^2+ \sqrt{2} X+1 \right) } { \left( X^2- \sqrt{2} X+1 \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {.} {}


c) Bestimme die \definitionsverweis {Partialbruchzerlegung}{}{} von
\mathdisp {{ \frac{ 1 }{ { \left( X^2+1 \right) } { \left( X^4+1 \right) } } }} { }
in
\mathl{\Q(X)}{.}

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise die \anfuehrung{Gradformel}{} für eine Kette von \definitionsverweis {endlichen Kör\-pererweiterungen}{}{} $K \subseteq L \subseteq M$.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei
\mavergleichskette
{\vergleichskette
{ q }
{ \in }{\Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {rationale Zahl}{}{,} die in $\Q$ keine dritte Wurzel besitzt. Bestimme den \definitionsverweis {Zerfällungskörper}{}{} $L$ des Polynoms
\mathl{X^3 -q}{} über $\Q$. Welchen \definitionsverweis {Grad}{}{} besitzt er? Man gebe auch eine Realisierung des Zerfällungskörpers als Unterkörper von ${\mathbb C}$ an.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass zu zwei konstruierbaren positiven reellen Zahlen \mathkor {} {a} {und} {b} {} die Potenz
\mathl{a^b}{} nicht konstruierbar sein muss.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass es auf dem Einheitskreis unendlich viele \definitionsverweis {konstruierbare}{}{} Punkte gibt.

}
{} {}