Zum Inhalt springen

Kurs:Funktionentheorie/Komplexe Zahlen als Matrizen

Aus Wikiversity

Die Menge der -Matrizen der Form

mit

bildet ebenfalls ein Modell der komplexen Zahlen. Dabei werden die reelle Einheit bzw. die imaginäre Einheit durch die Einheitsmatrix bzw. die Matrix dargestellt. Daher gilt:

Diese Menge ist ein Unterraum des Vektorraums der reellen -Matrizen.

Reelle Zahlen entsprechen Diagonalmatrizen

Die zu den Matrizen gehörenden linearen Abbildungen sind, sofern und nicht beide null sind, Drehstreckungen im Raum . Es handelt sich um genau dieselben Drehstreckungen wie bei der Interpretation der Multiplikation mit einer komplexen Zahl in der gaußschen Zahlenebene.