Kurs:Grundkurs Mathematik/Teil I/2/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 1 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 4 }

\renewcommand{\asechs}{ 1 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 7 }

\renewcommand{\aneun}{ 3 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 9 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 2 }

\renewcommand{\asechzehn}{ 11 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 3 }

\renewcommand{\aneunzehn}{ 64 }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleachtzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Abbildung} {} $F$ von einer Menge $L$ in eine Menge $M$.

}{Die \stichwort {Ordnungsrelation} {} auf den natürlichen Zahlen.

}{Die Menge der \stichwort {ganzen} {} Zahlen.

}{Die Folge der \stichwort {euklidischen Reste} {} zu ganzen Zahlen
\mathl{a,b}{} mit
\mavergleichskette
{\vergleichskette
{b }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Ein \stichwort {Körper} {.}

}{Ein \stichwort {Prozent} {.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Beziehung zwischen der Multiplikation und endlichen Mengen.}{Der Satz über die Anzahl der Permutationen.}{Der Satz über die Approximation von rationalen Zahlen durch Dezimalbrüche.}

}
{} {}




\inputaufgabegibtloesung
{1}
{

Wir betrachten den Satz \anfuehrung{Diese Vorlesung versteht keine Sau}{.} Negiere diesen Satz durch eine Existenzaussage.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt. \wahrheitstabellezweieins{ } {\tabellenzeiledrei {$ p $} {$ q $} {$? $} } {\tabellenzeiledrei {w} {w} {f} } {\tabellenzeiledrei {w} {f} {w} } {\tabellenzeiledrei {f} {w} {f} } {\tabellenzeiledrei {f} {f} {w} }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise durch Induktion für alle
\mathl{n \in \N_+}{} die Formel
\mavergleichskettedisp
{\vergleichskette
{ \sum_{k = 1}^n (-1)^{k-1} k^2 }
{ =} { (-1)^{n+1} { \frac{ n(n+1) }{ 2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{1}
{

Ist die Abbildung \maabbeledisp {\varphi} {\N_+ \times \N_+} { \N_+ \times \N_+\times \N_+ } {(a,b)} {(a+b,ab,a^b) } {,} \definitionsverweis {injektiv}{}{} oder nicht?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $M$ eine $k$-elementige Menge. Wie viele Verknüpfungen gibt es auf $M$?

}
{} {}




\inputaufgabegibtloesung
{7}
{

Zeige, dass das schriftliche Addieren korrekt ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es seien
\mathl{a,b,c}{} natürliche Zahlen mit
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{a-b }
{ \geq }{ c }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass dann
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{ b+c }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist und dass
\mavergleichskettedisp
{\vergleichskette
{(a-b)-c }
{ =} {a-(b+c) }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es stehen zwei Eimer ohne Markierungen zur Verfügung, ferner eine Wasserquelle. Der eine Eimer hat ein Fassungsvermögen von $7$ und der andere ein Fassungsvermögen von $10$ Litern. Zeige, dass man allein durch Auffüllungen, Ausleerungen und Umschüttungen erreichen kann, dass in einem Eimer genau ein Liter Wasser enthalten ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise die Eindeutigkeit der Primfaktorzerlegung für natürliche Zahlen.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme in $\Z$ mit Hilfe des euklidischen Algorithmus den \definitionsverweis {größten gemeinsamen Teiler}{}{} von $1085$ und $806$ und schreibe die beiden Zahlen als Vielfache des größten gemeinsamen Teilers.

}
{} {}




\inputaufgabegibtloesung
{9 (2+1+2+2+2)}
{

Zwei Schwimmer, \mathkor {} {A} {und} {B} {,} schwimmen auf einer $50$-Meter-Bahn einen Kilometer lang. Schwimmer $A$ schwimmt $3 m/s$ \zusatzklammer {das ist besser als der Weltrekord} {} {} und Schwimmer $B$ schwimmt $2 m/s$. \aufzaehlungfuenf{Erstelle in einem Diagramm für beide Schwimmer den Graphen der jeweiligen Abbildung, die für die Zeit zwischen \mathkor {} {0} {und} {100} {} Sekunden angibt, wie weit der Schwimmer von der Startlinie zu diesem Zeitpunkt \zusatzklammer {wirklich, also unter Berücksichtigung der Wenden} {} {} entfernt ist. }{Wie weit von der Startlinie entfernt befindet sich Schwimmer $A$ \zusatzklammer {und Schwimmer $B$} {} {} nach $30$ Sekunden? }{Nach wie vielen Sekunden begegnen sich die beiden Schwimmer zum ersten Mal \zusatzklammer {abgesehen vom Start} {} {?} }{Wie oft begegnen sich die beiden Schwimmer \zusatzklammer {Start mitzählen} {} {?} }{Wie oft überrundet Schwimmer $A$ den Schwimmer $B$? }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es soll Holz unterschiedlicher Länge \zusatzklammer {ohne Abfall} {} {} in Stücke zerlegt werden, die zwischen $30$ und
\mathl{40}{} cm lang sein sollen \zusatzklammer {jeweils einschließlich} {} {.} Für welche Holzlängen ist dies möglich?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei
\mathl{n \in \N_+}{.} Vergleiche die beiden rationalen Zahlen \mathkor {} {{ \frac{ n }{ n+1 } }} {und} {{ \frac{ n-1 }{ n } }} {.}

}
{} {}




\inputaufgabegibtloesung
{11 (5+4+2)}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und seien
\mathl{a,b \neq 0}{} Elemente aus $K$. Beweise die folgenden Potenzgesetze für ganzzahlige Exponenten
\mathl{m,n \in \Z}{.} Dabei darf man die entsprechenden Gesetze für Exponenten aus $\N$ sowie die Tatsachen, dass das Inverse des Inversen wieder das Ausgangselement ist und dass das Inverse von
\mathl{u^k}{} gleich
\mathl{{ \left( u^{-1} \right) }^k}{} ist, verwenden. \aufzaehlungdrei{
\mavergleichskettedisp
{\vergleichskette
{a^{m+n} }
{ =} { a^m \cdot a^n }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{(a^{m})^n }
{ =} { a^{m n } }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{(a\cdot b)^n }
{ =} { a^n \cdot b^n }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bei der Onlinepartnervermittlung \anfuehrung{e-Tarzan meets e-Jane}{} verliebt sich alle elf Minuten ein Single. Wie lange \zusatzklammer {in gerundeten Jahren} {} {} dauert es, bis sich alle erwachsenen Menschen in Deutschland \zusatzklammer {ca. $65 000 000$} {} {} verliebt haben, wenn ihnen allein dieser Weg zur Verfügung steht.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Lucy Sonnenschein hat im Juni $80$ Euro ausgegeben, davon $20\,\%$ für Eis, im Juli hat sie $90$ Euro ausgegeben, davon $30\,\%$ für Eis, und im August hat sie $70$ Euro ausgegeben, und zwar hat sie davon $15$ Euro für Eis ausgegeben. Wie viel Prozent ihrer Ausgaben in den drei Sommermonaten gab sie für Eis aus?

}
{} {}