Kurs:Grundkurs Mathematik/Teil II/15/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 1 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 1 }

\renewcommand{\asechs}{ 3 }

\renewcommand{\asieben}{ 5 }

\renewcommand{\aacht}{ 2 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 3 }

\renewcommand{\aelf}{ 3 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 6 }

\renewcommand{\avierzehn}{ 8 }

\renewcommand{\afuenfzehn}{ 2 }

\renewcommand{\asechzehn}{ 3 }

\renewcommand{\asiebzehn}{ 1 }

\renewcommand{\aachtzehn}{ 4 }

\renewcommand{\aneunzehn}{ 2 }

\renewcommand{\azwanzig}{ 4 }

\renewcommand{\aeinundzwanzig}{ 64 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Ein \stichwort {Untervektorraum} {}
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{K^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Ein \stichwort {Gruppenhomomorphismus} {} zwischen \definitionsverweis {Gruppen}{}{} \mathkor {} {(G, \circ, e_G)} {und} {(H, \circ, e_H)} {.}

}{Die \stichwort {Konvergenz} {} einer Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in einem angeordneten Körper $K$ gegen $x \in K$.

}{Die \stichwort {Teilerbeziehung} {} zwischen den Polynomen $T$ und $P$ aus $K[X]$.

}{Die \stichwort {Sinusreihe} {} zu
\mathl{x \in \R}{.}

}{Die \stichwort {Unabhängigkeit} {} von Ereignissen
\mavergleichskettedisp
{\vergleichskette
{E,F }
{ \subseteq} {M }
{ } { }
{ } { }
{ } { }
} {}{}{} in einem endlichen Wahrscheinlichkeitsraum
\mathl{(M, P)}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die algebraische Struktur der Quotientenmenge zu einer Untergruppe
\mavergleichskette
{\vergleichskette
{H }
{ \subseteq }{G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einer kommutativen Gruppe $G$.}{Der Satz über Dezimalbruchfolgen und Cauchy-Folgen.}{Der Satz über die Eigenschaften der trigonometrischen Funktionen Sinus und Kosinus.}

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bei einem linearen Gleichungssystem führe das Eliminationsverfahren auf die Gleichung
\mavergleichskettedisp
{\vergleichskette
{0 }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Welche Folgerung kann man daraus schließen?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} zu
\mathdisp {\begin{pmatrix} 1 & 3 & 0 \\ 5 & 2 & 1 \\0 & 0 & 2 \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme die Lösungsmenge des Ungleichungssystems
\mavergleichskettedisp
{\vergleichskette
{2x }
{ \geq} {7 }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{5x }
{ \leq} { 12 }
{ } { }
{ } { }
{ } { }
} {}{}{} über $\Q$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es seien \mathkor {} {M} {und} {N} {} \definitionsverweis {endliche Mengen}{}{} mit $m$ bzw. $n$ Elementen und sei \maabbdisp {f} {M} {N } {} eine \definitionsverweis {Abbildung}{}{.} Wie viele Abbildungen \maabbdisp {s} {N} {M } {} mit
\mavergleichskettedisp
{\vergleichskette
{f \circ s }
{ =} { \operatorname{Id}_{ N } }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt es?

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz über die algebraische Struktur der Restklassenringe $R/ {\mathfrak a}$ zu einem Ideal
\mavergleichskette
{\vergleichskette
{{\mathfrak a} }
{ \subseteq }{R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einem kommutativen Ring $R$.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Begründe geometrisch, dass die Wurzeln
\mathl{\sqrt{n} }{,}
\mathl{ n \in \N }{,} als Länge von \anfuehrung{natürlichen}{} Strecken vorkommen.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {konvergente Folge}{}{} in $K$ mit
\mathl{x_n \neq 0}{} für alle
\mathl{n \in \N}{} und
\mathl{\lim_{n \rightarrow \infty} x_n=x \neq 0}{.} Zeige, dass
\mathl{{ \left( \frac{1}{x_n} \right) }_{ n \in \N }}{} ebenfalls konvergent mit
\mathdisp {\lim_{n \rightarrow \infty} \frac{1}{x_n}= \frac{1}{x}} { }
ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die \definitionsverweis {rationale Zahl}{}{,} die im Dezimalsystem durch
\mathdisp {0,18 \overline{374}} { }
gegeben ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{.} Zeige, dass eine \definitionsverweis {Cauchy-Folge}{}{} ${ \left( x_n \right) }_{n \in \N }$ in $K$ \definitionsverweis {beschränkt}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mathl{[a,b]}{} ein \definitionsverweis {Intervall}{}{} in einem angeordneten Körper $K$ und es seien
\mathl{x,y \in [a,b]}{.} Zeige
\mavergleichskettedisp
{\vergleichskette
{ \betrag { y-x } }
{ \leq} { b-a }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $K$ ein Körper und es seien $n$ verschiedene Elemente $a_1 , \ldots , a_n \in K$ und $n$ Elemente $b_1 , \ldots , b_n \in K$ gegeben. Zeige, dass es ein eindeutiges Polynom
\mathl{P \in K[X]}{} vom Grad $\leq n-1$ gibt derart, dass $P(a_i)= b_i$ für alle $i$ ist.

}
{} {}




\inputaufgabegibtloesung
{8 (3+2+3)}
{

Wir betrachten auf der Menge $C$ aller stetigen Funktionen von $\R$ nach $\R$ die folgende Relation: Es ist
\mathl{f \sim g}{,} falls es eine nullstellenfreie stetige Funktion \maabb {\alpha} {\R} {\R } {} mit
\mavergleichskettedisp
{\vergleichskette
{f }
{ =} {g \cdot \alpha }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt. \aufzaehlungdrei{Zeige, dass $\sim$ eine Äquivalenzrelation ist. }{Zeige, dass aus
\mathl{f \sim g}{} folgt, dass die Nullstellenmenge von $f$ und von $g$ übereinstimmen. }{Zeige, dass die beiden Funktionen
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{g(x) }
{ =} {x^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} nicht zueinander äquivalent sind. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Zeige, dass der Zwischenwertsatz für stetige Funktionen von $\Q$ nach $\Q$ nicht gelten muss.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Vergleiche die beiden Zahlen
\mathdisp {\sqrt{3}^{ - { \frac{ 9 }{ 4 } } } \text{ und } \sqrt{3}^{- \sqrt{5} }} { . }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Erstelle eine Kreisgleichung für den Kreis im $\R^2$ mit Mittelpunkt
\mathl{(2,7)}{,} der durch den Punkt
\mathl{(4,-3)}{} läuft.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Entscheide, ob die \definitionsverweis {Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ \defeq} { { \frac{ 3 \sin^{ 4 } n -7n^3 +11n }{ 5 n^3 -4n^2 - \cos n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} in $\R$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Ein Hellseher behauptet, dass er nicht nur die sechs Richtigen im Lotto voraussagen kann, sondern auch die Reihenfolge, in der sie gezogen werden. Wie hoch ist dafür die Wahrscheinlichkeit?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es werden unabhängig voneinander zwei Zahlen
\mathl{x,y}{} aus
\mathl{\{1,2 , \ldots , 10\}}{} gezogen \zusatzklammer {mit Zurücklegen} {} {.} Bestimme die Wahrscheinlichkeit, dass
\mathl{xy}{} eine \definitionsverweis {Quadratzahl}{}{} ist.

}
{} {}