Kurs:Grundkurs Mathematik/Teil II/24/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 4 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 7 }

\renewcommand{\aacht}{ 1 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 12 }

\renewcommand{\aelf}{ 6 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 3 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 9 }

\renewcommand{\asechzehn}{ 64 }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellefuenfzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {lineare Gleichung} {} zu einer Variablenmenge
\mathl{X_1 , \ldots , X_n}{} über einem Körper $K$.

}{Eine \stichwortpraemath {m \times n} {Matrix}{} über einem Körper $K$.

}{Die \stichwort {Transitivität} {} einer \definitionsverweis {Relation}{}{} $R$ auf einer Menge $M$.

}{Die \stichwort {Konvergenz} {} einer Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in einem angeordneten Körper $K$ gegen $x \in K$.

}{Eine \stichwort {irrationale} {} Zahl.

}{Eine \stichwort {diskrete Wahrscheinlichkeitsdichte} {} auf einer endlichen Menge $M$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über den Lösungsraum bei einer linearen Gleichung.}{Das \stichwort {Quetschkriterium} {} für Folgen in einem angeordneten Körper $K$.}{Die \stichwort {Formel für die totale Wahrscheinlichkeit} {.}}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Löse das \definitionsverweis {inhomogene Gleichungssystem}{}{}
\mathdisp {\begin{matrix} 2 x & +3 y & \, \, \, \, - z & + w & = & 2 \\ 2 x & \, \, \, \, - y & -2 z & + w & = & 0 \\ - x & + y & + z & \, \, \, \, \, \, \, \, & = & -2 \\ x & +2 y & +5 z & \, \, \, \, \, \, \, \, & = & 3 \, . \end{matrix}} { }

}
{} {}




\inputaufgabe
{1}
{

Inwiefern hat das Eliminationsverfahren für lineare Gleichungssysteme mit dem Induktionsprinzip zu tun?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} zu
\mathdisp {\begin{pmatrix} 1 & 5 & 0 \\ 4 & 4 & 1 \\0 & 0 & 5 \end{pmatrix}} { . }

}
{} {}




\inputaufgabe
{2}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Biclique K 3 3.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Biclique K 3 3.svg } {} {Koko90} {Commons} {CC-by-sa 3.0} {}

Es sollen drei Häuser jeweils mit Leitungen an Wasser, Gas und Elektrizität angeschlossen werden. Beschreibe eine Möglichkeit, bei der es nur eine Überschneidung gibt.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise den Satz über die Körpereigenschaft der Restklassenringe
\mathl{\Z/(n)}{.}

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme, ob die reelle Zahl
\mathdisp {\sqrt{10000000000000000000000000000}} { }
rational ist oder nicht.

}
{} {}




\inputaufgabegibtloesung
{4 (1+1+1+1)}
{

Es sei ${ \left( x_n \right) }_{n \in \N }$ die \definitionsverweis {Heron-Folge}{}{} zur Berechnung von $\sqrt{3}$ mit dem Startwert
\mavergleichskette
{\vergleichskette
{x_0 }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und ${ \left( y_n \right) }_{n \in \N }$ die \definitionsverweis {Heron-Folge}{}{} zur Berechnung von $\sqrt{ { \frac{ 1 }{ 3 } } }$ mit dem Startwert
\mavergleichskette
{\vergleichskette
{y_0 }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} \aufzaehlungvier{Berechne \mathkor {} {x_1} {und} {x_2} {.} }{Berechne \mathkor {} {y_1} {und} {y_2} {.} }{Berechne \mathkor {} {x_0 \cdot y_0, \, x_1 \cdot y_1} {und} {x_2 \cdot y_2} {.} }{Konvergiert die \definitionsverweis {Produktfolge}{}{}
\mavergleichskette
{\vergleichskette
{z_n }
{ = }{x_n \cdot y_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} innerhalb der rationalen Zahlen? }

}
{} {}




\inputaufgabegibtloesung
{12 (2+1+2+3+2+2)}
{

Wir beschreiben eine Konstruktion von ineinander enthaltenen Intervallen, und gehen vom Einheitsintervall
\mathl{[0,1]}{} aus. Das Intervall wird in drei gleichlange Teilintervalle zerlegt und davon nehmen wir das dritte \zusatzklammer {Regel 1} {} {.} Das entstehende Intervall teilen wir in fünf gleichlange Teilintervalle ein und davon nehmen wir das vierte \zusatzklammer {Regel 2} {} {.} Jetzt wenden wir abwechselnd Regel 1 und Regel 2 an, immer bezogen auf das zuvor konstruierte Intervall. Dabei entsteht eine Folge von Intervallen
\mathbed {I_n} {}
{n \in \N} {}
{} {} {} {} \zusatzklammer {$I_0$ ist das Einheitsintervall, das als Startintervall dient} {} {.} \aufzaehlungsechs{Bestimme die Intervallgrenzen des Intervalls, das im zweiten Schritt konstruiert wird \zusatzklammer {also von $I_2$, nachdem einmal die Regel $1$ und einmal die Regel 2 angewendet wurde} {} {.} }{Wie kann man den Konstruktionsschritt, der durch die einmalige Hintereinanderausführung von Regel 1 und von Regel 2 gegeben ist, mit einer einzigen Regel ausdrücken? }{Bestimme ein Intervall der Form $[ { \frac{ a }{ 100 } } , { \frac{ a }{ 100 } }+ { \frac{ 1 }{ 100 } }]$ mit
\mathl{a \in \N}{,} das ganz in $I_2$ enthalten ist. }{Erstelle eine Formel, die die untere Intervallgrenze des Intervalls
\mathl{I_{2k}}{,}
\mathl{k \in \N}{,} ausdrückt. }{Es gibt genau eine rationale Zahl $c$, die in jedem Intervall $I_n$ enthalten ist. Bestimme $c$ als Bruch. }{Gibt es ein Ziffernsystem, in dem die rationale Zahl $c$ aus (5) eine Ziffernentwicklung mit Periodenlänge $1$ besitzt? }

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise die Aussage, dass eine reelle Zahl, die eine periodische Dezimalentwicklung besitzt, eine rationale Zahl ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz über die Anzahl von Nullstellen eines Polynoms über einem Körper $K$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mavergleichskette
{\vergleichskette
{u }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} fixiert. Zeige, dass die Potenzfunktion \maabbeledisp {f} {\R_+} {\R } {x} {x^u } {,} \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Ergänze die folgende Tabelle, in der Winkel in verschiedenen Maßeinheiten miteinander in Bezug gesetzt werden. Die Prozentangabe bezieht sich auf den Vollkreis. %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ }

\renewcommand{\leitzeileeins}{ Grad }

\renewcommand{\leitzeilezwei}{ Bogenmaß }

\renewcommand{\leitzeiledrei}{ Prozent }

\renewcommand{\leitzeilevier}{ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ }

\renewcommand{\leitspaltezwei}{ }

\renewcommand{\leitspaltedrei}{ }

\renewcommand{\leitspaltevier}{ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ \, }

\renewcommand{\aeinsxzwei}{ \, }

\renewcommand{\aeinsxdrei}{ 100\,\% }

\renewcommand{\aeinsxvier}{ }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ 270^{\circ} }

\renewcommand{\azweixzwei}{ \, }

\renewcommand{\azweixdrei}{ \, }

\renewcommand{\azweixvier}{ }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ \, }

\renewcommand{\adreixzwei}{ { \frac{ \pi }{ 10 } } }

\renewcommand{\adreixdrei}{ \, }

\renewcommand{\adreixvier}{ }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ 60^{\circ} }

\renewcommand{\avierxzwei}{ \, }

\renewcommand{\avierxdrei}{ \, }

\renewcommand{\avierxvier}{ }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ \, }

\renewcommand{\afuenfxzwei}{ \pi }

\renewcommand{\afuenfxdrei}{ \, }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ \, }

\renewcommand{\asechsxzwei}{ \, }

\renewcommand{\asechsxdrei}{ 1\,\% }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }


\tabelleleitsechsxdrei

}
{} {}




\inputaufgabegibtloesung
{9 (2+1+2+4)}
{

Beim Skat gibt es $32$ Karten, darunter $4$ Buben, und jeder Spieler bekommt $10$ Karten. \aufzaehlungvier{Bestimme die Wahrscheinlichkeit, dass ein bestimmter Spieler alle $4$ Buben bekommt. }{Bestimme die Wahrscheinlichkeit, dass einer der drei Spieler alle $4$ Buben bekommt. }{Bestimme die Wahrscheinlichkeit, dass ein bestimmter Spieler (genau) $2$ Buben bekommt. }{Spieler $A$ hat zwei Buben bekommen. Wie hoch ist die Wahrscheinlichkeit, dass Spieler $B$ ebenfalls zwei Buben hat? }

}
{} {}