Kurs:Lineare Algebra/Teil I/13/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 2 }
\renewcommand{\afuenf}{ 2 }
\renewcommand{\asechs}{ 1 }
\renewcommand{\asieben}{ 5 }
\renewcommand{\aacht}{ 3 }
\renewcommand{\aneun}{ 6 }
\renewcommand{\azehn}{ 4 }
\renewcommand{\aelf}{ 7 }
\renewcommand{\azwoelf}{ 1 }
\renewcommand{\adreizehn}{ 6 }
\renewcommand{\avierzehn}{ 4 }
\renewcommand{\afuenfzehn}{ 4 }
\renewcommand{\asechzehn}{ 6 }
\renewcommand{\asiebzehn}{ 7 }
\renewcommand{\aachtzehn}{ 66 }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellesiebzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden
\zusatzklammer {kursiv gedruckten} {} {} Begriffe.
\aufzaehlungsechs{Ein \stichwort {neutrales Element} {}
\mathl{e \in M}{} zu einer \definitionsverweis {Verknüpfung}{}{}
\maabbeledisp {\circ} {M \times M} {M
} {(x,y)} {x \circ y
} {.}
}{Ein \stichwort {inhomogenes lineares Gleichungssystem} {} mit $m$ Gleichungen in $n$ Variablen über einem Körper $K$.
}{Eine \stichwort {Diagonalmatrix} {.}
}{\stichwort {Isomorphe} {} Vektorräume.
}{Die \stichwort {Spur} {} zu einer \definitionsverweis {linearen Abbildung}{}{} \maabb {\varphi} {V} {V } {} auf einem \definitionsverweis {endlichdimensionalen}{}{} $K$-\definitionsverweis {Vektorraum}{}{} $V$.
}{Eine \stichwort {trigonalisierbare} {} \definitionsverweis {lineare Abbildung}{}{} \maabb {\varphi} {V} {V } {,} wobei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} ist. }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Dimension des Standardraumes.}{Der Satz über das Signum und Transpositionen.}{Das \stichwort {Lemma von Bezout} {} für Polynome.}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass die Menge der
\definitionsverweis {Diagonalmatrizen}{}{}
ein
\definitionsverweis {Untervektorraum}{}{}
im Raum aller
$n \times n$-\definitionsverweis {Matrizen}{}{}
über $K$ ist und bestimme seine
\definitionsverweis {Dimension}{}{.}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Bestimme die \definitionsverweis {Übergangsmatrizen}{}{} \mathkor {} {M^{ \mathfrak{ u } }_{ \mathfrak{ v } }} {und} {M^{ \mathfrak{ v } }_{ \mathfrak{ u } }} {} für die \definitionsverweis {Standardbasis}{}{} $\mathfrak{ u }$ und die durch die Vektoren \mathlistdisp {v_1 = \begin{pmatrix} 0 \\0\\ 1\\0 \end{pmatrix}, \, v_2 = \begin{pmatrix} 1 \\0\\ 0\\0 \end{pmatrix}} {} {v_3 = \begin{pmatrix} 0 \\0\\ 0\\1 \end{pmatrix}} {und} {v_4 = \begin{pmatrix} 0 \\1\\ 0\\0 \end{pmatrix}} {} gegebene Basis $\mathfrak{ v }$ im $\R^4$.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Mustafa Müller beschließt, sich eine Woche lang ausschließlich von Schokolade seiner Lieblingssorte \anfuehrung{Gaumenfreude}{} zu ernähren. Eine Tafel
besitzt einen Energiewert von
\mathl{2300}{} kJ und sein Tagesbedarf an Energie ist
\mathl{10000}{} kJ. Wie viele Tafeln muss er am Tag
\zusatzklammer {gerundet auf zwei Nachkommastellen} {} {}
und wie viele Tafeln muss er in der Woche essen?
}
{} {}
\inputaufgabegibtloesung
{1}
{
Es sei
\maabbdisp {\varphi} {V} {W
} {}
eine
\definitionsverweis {lineare Abbildung}{}{}
zwischen den
$K$-\definitionsverweis {Vektorräumen}{}{}
\mathkor {} {V} {und} {W} {.}
Es sei
\mavergleichskette
{\vergleichskette
{ v
}
{ \in }{ V
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige
\mavergleichskette
{\vergleichskette
{\varphi( -v)
}
{ = }{- \varphi(v)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{5}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und es seien
\mathkor {} {V} {und} {W} {}
\definitionsverweis {endlichdimensionale}{}{}
$K$-\definitionsverweis {Vektor\-räume}{}{} mit
\mavergleichskette
{\vergleichskette
{ \dim_{ K } { \left( V \right) }
}
{ = }{ n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ \dim_{ K } { \left( W \right) }
}
{ = }{ m
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Welche Dimension besitzt der
\definitionsverweis {Produktraum}{}{}
$V \times W$?
}
{} {}
\inputaufgabegibtloesung
{3 (1+1+1)}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { \begin{pmatrix} 11 & -20 \\ 6 & -11 \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
a) Zeige
\mavergleichskettedisp
{\vergleichskette
{M^2
}
{ =} {E_2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
b) Bestimme die \definitionsverweis {inverse Matrix}{}{} zu $M$.
c) Löse die Gleichung
\mavergleichskettedisp
{\vergleichskette
{M \begin{pmatrix} x \\y \end{pmatrix}
}
{ =} { \begin{pmatrix} 4 \\-9 \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{6}
{
Beweise den Satz über die Beziehung zwischen der adjungierten Matrix und der Determinante.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und es seien
\mathkor {} {V} {und} {W} {}
\definitionsverweis {Vektorräume}{}{}
über $K$, wobei $V$
\definitionsverweis {endlichdimensional}{}{}
und
\mathl{v_1 , \ldots , v_n}{} eine
\definitionsverweis {Basis}{}{}
von $V$ sei. Es sei $\operatorname{Hom}_{ K } { \left( V , W \right) }$ der
$K$-\definitionsverweis {Vektorraum}{}{}
der
\definitionsverweis {linearen Abbildungen}{}{}
von \mathkor {} {V} {nach} {W} {.} Zeige, dass die Abbildung
\maabbeledisp {F} {\operatorname{Hom}_{ K } { \left( V , W \right) }} {W^n } {
\varphi} {F(\varphi) := \left( \varphi(v_1) , \, \ldots , \, \varphi(v_n) \right) } {,}
ein
\definitionsverweis {Isomorphismus}{}{}
von $K$-Vektorräumen ist.
}
{} {}
\inputaufgabegibtloesung
{7 (5+1+1)}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{ U
}
{ =} { \langle \begin{pmatrix} 3 \\4\\ 8 \end{pmatrix} ,\, \begin{pmatrix} 2 \\1\\ -1 \end{pmatrix} \rangle
}
{ \subseteq} { K^3
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{T
}
{ =} { \langle \begin{pmatrix} 7 \\1\\ 3 \end{pmatrix} ,\, \begin{pmatrix} 5 \\4\\ 2 \end{pmatrix} \rangle
}
{ \subseteq} { K^3
}
{ } {
}
{ } {
}
}
{}{}{.}
a) Beschreibe den \definitionsverweis {Untervektorraum}{}{} $W$ der $3 \times 3$-\definitionsverweis {Matrizen}{}{,} die den Untervektorraum $U$ in den Untervektorraum $T$ abbilden, als Lösungsraum eines linearen Gleichungssystems.
b) Beschreibe $W$ durch ein eliminiertes Gleichungssystem.
c) Bestimme die Dimension von $W$.
}
{} {}
\inputaufgabe
{1}
{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Permutation8.png} }
\end{center}
\bildtext {} }
\bildlizenz { Permutation8.png } {} {MGausmann} {Commons} {CC-by-sa 4.0} {}
Skizziere ein Pfeildiagramm, das die nebenstehende Permutation überschneidungsfrei darstellt.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Wir betrachten in
\mathl{\Q[X]}{} die beiden
\definitionsverweis {Hauptideale}{}{}
\mathkor {} {(X-2)} {und} {(X+3)} {.}
Zeige, dass der Durchschnitt
\mathdisp {(X-2) \cap (X+3)} { }
gleich dem Hauptideal
\mathl{( (X-2)\cdot(X+3) )}{} ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Beweise den Satz über die Anzahl von Nullstellen eines Polynoms über einem Körper $K$.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Zeige, dass die Matrix
\mathdisp {\begin{pmatrix} 6 & 1 & 0 \\ 0 & 2 & 4 \\0 & 0 & 7 \end{pmatrix}} { }
über $\R$
\definitionsverweis {diagonalisierbar}{}{}
ist und bestimme eine Basis aus Eigenvektoren.
}
{} {}
\inputaufgabegibtloesung
{6}
{
Es sei $M$ eine
$n \times n$-\definitionsverweis {Matrix}{}{,}
mit dem
\definitionsverweis {charakteristischen Polynom}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M }
}
{ =} { X^n + c_{n-1}X^{n-1}+c_{n-2}X^{n-2} + \cdots + c_2X^2+c_1X+c_0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Bestimme das charakteristische Polynom der mit
\mavergleichskette
{\vergleichskette
{ s
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gestreckten Matrix
\mathl{sM}{.}
}
{} {}
\inputaufgabegibtloesung
{7}
{
Beweise den Satz über baryzentrische Koordinaten.
}
{} {}