Kurs:Lineare Algebra/Teil I/50/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 3 }

\renewcommand{\avier}{ 4 }

\renewcommand{\afuenf}{ 5 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 6 }

\renewcommand{\aacht}{ 5 }

\renewcommand{\aneun}{ 12 }

\renewcommand{\azehn}{ 0 }

\renewcommand{\aelf}{ 5 }

\renewcommand{\azwoelf}{ 2 }

\renewcommand{\adreizehn}{ 0 }

\renewcommand{\avierzehn}{ 6 }

\renewcommand{\afuenfzehn}{ 0 }

\renewcommand{\asechzehn}{ 2 }

\renewcommand{\asiebzehn}{ 60 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Hintereinanderschaltung} {} der Abbildungen \maabbdisp {F} {L} {M } {} und \maabbdisp {G} {M} {N } {.}

}{/Definition/Begriff }{/Definition/Begriff }{/Definition/Begriff }{/Definition/Begriff }{/Definition/Begriff}

}
{} {}




\inputaufgabe
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{/Fakt/Name}{/Fakt/Name}{/Fakt/Name}

}
{} {}




\inputaufgabe
{3}
{

Erläutere das Prinzip \stichwort {Beweis durch Fallunterscheidung} {.}

}
{} {}




\inputaufgabe
{4 (1+3)}
{

In einer Höhle befinden sich im Innern am Ende des Ganges vier Personen. Sie haben eine Taschenlampe bei sich und der Gang kann nur mit der Taschenlampe begangen werden. Dabei können höchstens zwei Leute gemeinsam durch den Gang gehen. Die Personen sind unterschiedlich geschickt, die erste Person benötigt eine Stunde, die zweite Person benötigt zwei Stunden, die dritte Person benötigt vier Stunden und die vierte Person benötigt fünf Stunden, um den Gang zu durchlaufen. Wenn zwei Personen gleichzeitig gehen, entscheidet die langsamere Person über die Geschwindigkeit. \aufzaehlungzwei {Die Batterie für die Taschenlampe reicht für genau $13$ Stunden. Können alle vier die Höhle verlassen? } {Die Batterie für die Taschenlampe reicht für genau $12$ Stunden. Können alle vier die Höhle verlassen? }

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise die allgemeine binomische Formel, also die Formel
\mathdisp {( a + b )^{n} = \sum_{ k=0 } ^{ n } \binom { n } { k } a^{k} b^{n - k}} { }
für
\mathl{n \in \N}{} und beliebige Elemente
\mathl{a,b \in K}{} in einem Körper $K$.

}
{} {}




\inputaufgabe
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Betrachte die Abbildungen, bei der ein Polynom auf seine entsprechende Polynomfunktion abgebildet wird. Geben Sie einen Körper an, sodass die Abbildung injektiv ist und einen, für den sie es nicht ist. Und beweisen Sie dies.

}
{} {}




\inputaufgabegibtloesung
{6 (3+1+2)}
{

\aufzaehlungdrei{Bestimme diejenigen reellen Polynomfunktionen, die bijektiv sind und für die die Umkehrfunktion ebenfalls polynomial ist. }{Man gebe ein Beispiel für eine bijektive reelle Polynomfunktion, für die die Umkehrfunktion kein Polynom ist. }{Zeige, dass durch das Polynom $X^5$ eine bijektive Abbildung \maabbeledisp {} { \Z/(7) } {\Z/(7) } {x} {x^5 } {,} gegeben ist. Ist die Umkehrabbildung polynomial? }

}
{} {}




\inputaufgabegibtloesung
{5}
{

Bestimme die \definitionsverweis {Übergangsmatrizen}{}{} \mathkor {} {M^{ \mathfrak{ u } }_{ \mathfrak{ v } }} {und} {M^{ \mathfrak{ v } }_{ \mathfrak{ u } }} {} für die \definitionsverweis {Standardbasis}{}{} $\mathfrak{ u }$ und die durch die Vektoren \mathlistdisp {v_1 = \begin{pmatrix} 1 \\4\\ 5 \end{pmatrix}} {} {v_2 = \begin{pmatrix} 0 \\1\\ 2 \end{pmatrix}} {und} {v_3 = \begin{pmatrix} -1 \\1\\ 0 \end{pmatrix}} {} gegebene Basis $\mathfrak{ v }$ im $\R^3$.

}
{} {}




\inputaufgabegibtloesung
{12}
{

Beweise den \stichwort {Charakterisierungssatz} {} für eine \definitionsverweis {Basis}{}{}
\mathl{v_1 , \ldots , v_n}{} in einem $K$-\definitionsverweis {Vektorraum}{}{} $V$.

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{5 (2+3)}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mathl{a \in K}{} ein fixiertes Element.

a) Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ {\mathfrak a} }
{ =} { { \left\{ F \in K[X] \mid F(a) = 0 \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} ein \definitionsverweis {Ideal}{}{} ist.

b) Bestimme ein Polynom
\mathl{P \in K[X]}{} mit
\mavergleichskettedisp
{\vergleichskette
{ {\mathfrak a} }
{ =} { (P) }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Beweise, dass der Polynomring kein Körper ist.

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{6 (2+2+2)}
{

Wir betrachten die Matrix
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} 7 & 0 & 2 \\ 0 & 7 & -1 \\0 & 0 & 7 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} über $\Q$.

a) Bestimme die \definitionsverweis {jordansche Normalform}{}{} von $M$.

b) Bestimme die kanonische Zerlegung von $M$ in einen \definitionsverweis {diagonalisierbaren}{}{} Anteil und einen \definitionsverweis {nilpotenten}{}{} Anteil.

c) Welche Eigenschaften der kanonischen Zerlegung erfüllt die Zerlegung
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} 7 & 0 & 2 \\ 0 & 7 & -1 \\0 & 0 & 7 \end{pmatrix} }
{ =} { \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\0 & 0 & 7 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -1 \\0 & 0 & 0 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,} welche nicht?

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme, ob im $\R^3$ der Ausdruck
\mathdisp {{ \frac{ 1 }{ 3 } } \begin{pmatrix} 2 \\7\\ 6 \end{pmatrix} + { \frac{ 3 }{ 7 } } \begin{pmatrix} 9 \\0\\ 9 \end{pmatrix} + { \frac{ 3 }{ 13 } } \begin{pmatrix} 5 \\5\\ 2 \end{pmatrix}} { }
eine \definitionsverweis {baryzentrische Kombination}{}{} ist.

}
{} {}