Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Definitionsabfrage
Zu Mengen und heißt
der Durchschnitt (oder die Schnittmenge) der beiden Mengen.
Zu zwei Mengen und heißt
die Vereinigung der beiden Mengen.
Es seien und Mengen. Man sagt, dass eine Teilmenge von ist, wenn jedes Element von auch ein Element von ist. Diese Beziehung drückt man durch
aus und sagt auch, dass eine Inklusion vorliegt.
Zwei Mengen und heißen disjunkt, wenn ihr Durchschnitt ist.
Es seien zwei Mengen und gegeben. Dann nennt man die Menge
die Produktmenge der beiden Mengen.
Zu einer Menge nennt man die Menge aller Teilmengen von die Potenzmenge von . Sie wird mit
bezeichnet.
Es seien und Mengen. Eine Abbildung von nach ist dadurch gegeben, dass jedem Element der Menge genau ein Element der Menge zugeordnet wird. Das zu eindeutig bestimmte Element wird mit bezeichnet. Die Abbildung drückt man als Ganzes häufig durch
aus.
Es seien und Mengen und es sei ein Element. Dann heißt die Abbildung
die also jedes Element auf abbildet, die konstante Abbildung zum Wert .
Es sei eine Menge. Dann heißt die Abbildung
die also jedes Element auf sich selbst schickt, die identische Abbildung oder Identität auf . Sie wird mit oder bezeichnet.
Es seien und Mengen und es sei
eine Abbildung. Zu einer Teilmenge heißt
das Bild von unter . Für heißt
das Bild der Abbildung.
Es seien und Mengen und es sei
eine Abbildung. Zu einer Teilmenge heißt
das Urbild von unter . Für eine einelementige Teilmenge heißt
das Urbild von .
Es seien und Mengen und es sei
eine Abbildung. Dann heißt injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.
Es seien und Mengen und es sei
eine Abbildung. Dann heißt surjektiv, wenn es für jedes mindestens ein Element mit
gibt.
Es seien und Mengen und es sei
eine Abbildung. Dann heißt bijektiv, wenn sowohl injektiv als auch surjektiv ist.
Es sei eine bijektive Abbildung. Dann heißt die Abbildung
die jedes Element auf das eindeutig bestimmte Element mit abbildet, die Umkehrabbildung zu .
Es seien und Mengen und
und
Abbildungen. Dann heißt die Abbildung
die Hintereinanderschaltung der Abbildungen und .
Es seien und Mengen. Eine Relation zwischen den Mengen und ist eine Teilmenge der Produktmenge , also .
Es seien und Mengen und es sei
eine Abbildung. Dann nennt man
den Graphen der Abbildung .
Eine Relation auf einer Menge ist eine Teilmenge der Produktmenge , also .
Es sei eine Menge und eine Relation auf . Man nennt
- reflexiv, wenn
gilt für alle .
- transitiv, wenn für beliebige
aus und aus stets folgt.
- symmetrisch, wenn für beliebige
aus auch folgt.
- antisymmetrisch, wenn für beliebige
aus und die Gleichheit folgt.
Eine Äquivalenzrelation auf einer Menge ist eine Relation , die die folgenden drei Eigenschaften besitzt (für beliebige ).
- Es ist (reflexiv).
- Aus folgt (symmetrisch).
- Aus und folgt (transitiv).
Dabei bedeutet , dass das Paar zu gehört.
Es sei eine Äquivalenzrelation und . Dann ist
die Äquivalenzklasse von bezüglich .
Es sei eine Äquivalenzrelation. Dann heißt
die Quotientenmenge von .
Es sei eine Äquivalenzrelation und die Quotientenmenge. Die Abbildung
heißt kanonische Projektion von .
Eine Menge mit einem ausgezeichneten Element und einer (Nachfolger-)Abbildung
heißt Zählsystem (oder induktives Zählsystem), wenn das folgende Induktionsaxiom erfüllt ist:
Für jede Teilmenge gilt: wenn die beiden Eigenschaften
- ,
- mit jedem Element ist auch ,
Eine Menge mit einem ausgezeichneten Element (die Null) und einer (Nachfolger)-Abbildung
heißt natürliche Zahlen (oder Dedekind-Peano-Modell für die natürlichen Zahlen), wenn die folgenden Dedekind-Peano-Axiome erfüllt sind.
- Das Element ist kein Nachfolger (die Null liegt also nicht im Bild der Nachfolgerabbildung).
- Jedes ist Nachfolger höchstens eines Elementes (d.h. die Nachfolgerabbildung ist injektiv).
- Für jede Teilmenge
gilt: Wenn die beiden Eigenschaften
- ,
- mit jedem Element
gelten, so ist .
Zwei Mengen und heißen gleichmächtig, wenn es eine bijektive Abbildung
Eine Relation auf einer Menge heißt Ordnungsrelation oder Ordnung, wenn folgende drei Bedingungen erfüllt sind.
- Es ist für alle .
- Aus und folgt stets .
- Aus und folgt .
Eine Verknüpfung auf einer Menge ist eine Abbildung
Eine Verknüpfung
auf einer Menge heißt kommutativ, wenn für alle die Gleichheit
gilt.
Eine Verknüpfung
auf einer Menge heißt assoziativ, wenn für alle die Gleichheit
gilt.
Es sei eine Menge mit einer Verknüpfung
gegeben. Dann heißt ein Element neutrales Element der Verknüpfung, wenn für alle die Gleichheit gilt.
Es sei eine Menge mit einer Verknüpfung
und einem neutralen Element gegeben. Dann heißt zu einem Element ein Element inverses Element (zu ). wenn die Gleichheit
gilt.
Es sei ein Dedekind-Peano-Modell der natürlichen Zahlen und . Dann definieren wir die Addition mit [[Kategorie:Addition mit (MSW)|~]] als diejenige aufgrund von Lemma 4.1 eindeutig bestimmte Abbildung
für die
gilt.
Es sei ein Dedekind-Peano-Modell der natürlichen Zahlen und . Dann definieren wir die Multiplikation mit [[Kategorie:Multiplikation mit (MSW)|~]] als diejenige aufgrund von Lemma 4.1 eindeutig bestimmte Abbildung
für die
gilt.
Zu einer natürlichen Zahl nennt man die Zahl
die Fakultät von (sprich Fakultät).
Eine Menge mit einem ausgezeichneten Element und mit einer Verknüpfung
heißt Gruppe, wenn folgende Eigenschaften erfüllt sind.
- Die Verknüpfung ist assoziativ, d.h. für alle
gilt
- Das Element ist ein neutrales Element, d.h. für alle
gilt
- Zu jedem
gibt es ein inverses Element, d.h. es gibt ein
mit
Es seien und zwei Mengen, auf denen jeweils eine Verknüpfung festgelegt ist. Dann heißt die auf der Produktmenge
(oder komponentenweise Verknüpfung).
Ein kommutativer Ring ist eine Menge mit zwei Verknüpfungen und (genannt Addition und Multiplikation) und mit zwei ausgezeichneten Elementen und derart, dass folgende Bedingungen erfüllt sind:
- ist eine kommutative Gruppe.
- Die Multiplikation ist eine assoziative und kommutative Verknüpfung und ist das neutrale Element der Multiplikation.
- Es gilt das Distributivgesetz, also
Eine Menge heißt ein Körper, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)
und zwei verschiedene Elemente gibt, die die folgenden Eigenschaften erfüllen.
- Axiome der Addition
- Assoziativgesetz: Für alle gilt: .
- Kommutativgesetz: Für alle gilt .
- ist das neutrale Element der Addition, d.h. für alle ist .
- Existenz des Negativen: Zu jedem gibt es ein Element mit .
- Axiome der Multiplikation
- Assoziativgesetz: Für alle gilt: .
- Kommutativgesetz: Für alle gilt .
- ist das neutrale Element der Multiplikation, d.h. für alle ist .
- Existenz des Inversen: Zu jedem mit gibt es ein Element mit .
- Distributivgesetz: Für alle gilt .
Es seien und natürliche Zahlen mit . Dann nennt man
den Binomialkoeffizienten „ über “.
Ein Körper heißt angeordnet, wenn es eine totale Ordnung auf gibt, die die beiden Eigenschaften
- Aus folgt (für beliebige ),
- Aus und folgt (für beliebige ),
erfüllt.
Es sei ein angeordneter Körper. Zu , , nennt man
das abgeschlossene Intervall.
das offene Intervall.
das linksseitig offene Intervall.
das rechtsseitig offene Intervall.
In einem angeordneten Körper ist der Betrag eines Elementes folgendermaßen definiert.
Es sei ein angeordneter Körper. Dann heißt archimedisch angeordnet, wenn das folgende Archimedische Axiom gilt, d.h. wenn es zu jedem eine natürliche Zahl mit
gibt.
Es sei ein archimedisch angeordneter Körper und . Die Gaußklammer von ist durch
definiert.
Es seien und Mengen. Dann nennt man eine Abbildung
auch ein -Tupel in . Bei spricht man von einem -Tupel in .
Es sei eine Menge und zu jedem sei eine Menge gegeben. Eine solche Situation nennt man eine Familie von Mengen
Die Menge heißt dabei die Indexmenge der Mengenfamilie.
Es sei , , eine Familie von Teilmengen einer Grundmenge . Dann heißt
der Durchschnitt der Mengen und
die Vereinigung der Mengen.
Es sei eine Menge und zu jedem sei eine Menge gegeben. Dann nennt man die Menge
die Produktmenge der .
Es sei ein angeordneter Körper. Eine Folge in ist eine Abbildung
Es sei eine Folge in einem angeordneten Körper und es sei . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.
Zu jedem , , gibt es ein derart, dass für alle die Beziehung
gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch
Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert.), andernfalls, dass sie divergiert.
Es sei ein angeordneter Körper und eine Teilmenge.
- Ein Element heißt eine obere Schranke für , wenn für alle gilt.
- Ein Element heißt eine untere Schranke für , wenn für alle gilt.
- heißt nach oben beschränkt, wenn eine obere Schranke für existiert.
- heißt nach unten beschränkt, wenn eine untere Schranke für existiert.
- heißt beschränkt, wenn sowohl nach oben als auch nach unten beschränkt ist.
- Ein Element heißt das Maximum von , wenn für alle gilt.
- Ein Element heißt das Minimum von , wenn für alle gilt.
- Eine obere Schranke von heißt das Supremum von , wenn für alle oberen Schranken von gilt.
- Eine untere Schranke von heißt das Infimum von , wenn für alle unteren Schranken von gilt.
Es sei ein angeordneter Körper und sei eine Folge in . Dann heißt die Folge wachsend, wenn ist für alle , und streng wachsend, wenn ist für alle . Die Folge heißt fallend, wenn ist für alle und streng fallend, wenn ist für alle .
Die reelle Zahl
heißt Eulersche Zahl.
Die Menge mit und , mit der komponentenweisen Addition und der durch
definierten Multiplikation nennt man Körper der komplexen Zahlen. Er wird mit
bezeichnet.
Zu einer komplexen Zahl
heißt
der Realteil von und
heißt der Imaginärteil von .
Die Abbildung
heißt komplexe Konjugation.
Zu einer komplexen Zahl
ist der Betrag durch
definiert.
Es sei ein Körper und eine kommutative Gruppe. Man nennt einen -Vektorraum, wenn eine Abbildung
erklärt ist, die folgende Axiome erfüllt (dabei seien und beliebig):
- ,
- ,
- ,
- .
Es sei ein Körper. Ein Ausdruck der Form
heißt Polynom in einer Variablen über .
Es sei ein Körper und ein - Vektorraum. Es sei eine Familie von Vektoren in . Dann heißt der Vektor
eine Linearkombination dieser Vektoren (zum Koeffiziententupel ).
Es sei ein Körper und ein - Vektorraum. Dann heißt eine Familie , , ein Erzeugendensystem von , wenn man jeden Vektor als
mit einer endlichen Teilfamilie und mit darstellen kann.
Es sei ein Körper und ein - Vektorraum. Eine Teilmenge heißt Untervektorraum, wenn die folgenden Eigenschaften gelten.
- .
- Mit ist auch .
- Mit und ist auch .
Es sei ein Körper und ein - Vektorraum. Zu einer Familie , , setzt man
und nennt dies den von der Familie erzeugten oder aufgespannten Untervektorraum.
Es sei ein Körper und . Dann nennt man
eine (homogene) lineare Gleichung in den Variablen zu den Koeffizienten , . Ein Tupel heißt Lösung der linearen Gleichung, wenn ist.
Wenn ein weiteres Element ist, so heißt
eine inhomogene lineare Gleichung und ein Tupel heißt Lösung der inhomogenen linearen Gleichung, wenn ist.
Es sei ein Körper und für und . Dann nennt man
ein (homogenes) lineares Gleichungssystem in den Variablen . Ein Tupel heißt Lösung des linearen Gleichungssystems, wenn für alle ist.
Wenn beliebig ist, so heißt
ein inhomogenes lineares Gleichungssystem und ein Tupel heißt Lösung des inhomogenen linearen Gleichungssystems, wenn für alle ist.
Es sei ein Körper und seien zwei (inhomogene) lineare Gleichungssysteme zur gleichen Variablenmenge gegeben. Die Systeme heißen äquivalent, wenn ihre Lösungsmengen übereinstimmen.
Es sei ein Körper und ein - Vektorraum. Dann heißt eine Familie von Vektoren , , linear unabhängig, wenn eine Gleichung
nur bei für alle möglich ist.
Es sei ein Körper und ein - Vektorraum. Dann heißt ein linear unabhängiges Erzeugendensystem , , von eine Basis von .
Es sei ein Körper und . Dann nennt man zu den Vektor
Es sei ein Körper und ein - Vektorraum mit einem endlichen Erzeugendensystem. Dann nennt man die Anzahl der Vektoren in einer Basis von die Dimension von , geschrieben
Es sei ein Körper und es seien und Vektorräume über . Eine Abbildung
heißt lineare Abbildung, wenn die beiden folgenden Eigenschaften erfüllt sind.
- für alle .
- für alle und .
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung. Dann nennt man
den Kern von .
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung und sei endlichdimensional. Dann nennt man
den Rang von .
Es sei ein Körper und es seien und Vektorräume über . Eine bijektive, lineare Abbildung
heißt Isomorphismus.
Es sei ein Körper. Zwei - Vektorräume und heißen isomorph, wenn es einen Isomorphismus von nach gibt.
Es sei ein Körper und es seien und Vektorräume über . Dann nennt man
den Homomorphismenraum. Er wird versehen mit der Addition, die durch
definiert wird, und der Skalarmultiplikation, die durch
definiert wird.
Es sei ein Körper und und Indexmengen. Eine -Matrix ist eine Abbildung
Bei und spricht man von einer -Matrix. In diesem Fall schreibt man eine Matrix zumeist tabellarisch als
Es sei ein Körper und es sei eine - Matrix und eine -Matrix über . Dann ist das Matrixprodukt
diejenige -Matrix, deren Einträge durch
gegeben sind.
Die - Matrix
nennt man die Einheitsmatrix.
Es sei ein Körper und sei eine - Matrix über . Dann heißt invertierbar, wenn es eine weitere Matrix mit
gibt.
Es sei ein Körper. Zu einer invertierbaren Matrix heißt die Matrix mit
die inverse Matrix von . Man schreibt dafür
Es sei ein Körper und sei ein - dimensionaler Vektorraum mit einer Basis und sei ein -dimensionaler Vektorraum mit einer Basis .
Zu einer linearen Abbildung
heißt die - Matrix
wobei die -te Koordinate von bezüglich der Basis ist, die beschreibende Matrix zu bezüglich der Basen.
Zu einer Matrix heißt die durch
gemäß Satz 12.3 definierte lineare Abbildung die durch festgelegte lineare Abbildung.
Es sei ein Körper und sei eine - Matrix über . Dann nennt man die folgenden Manipulationen an elementare Zeilenumformungen.
- Vertauschung von zwei Zeilen.
- Multiplikation einer Zeile mit .
- Addition des -fachen einer Zeile zu einer anderen Zeile.
Es sei ein Körper. Mit bezeichnen wir diejenige - Matrix, die an der Stelle den Wert und sonst überall den Wert hat. Dann nennt man die folgenden Matrizen Elementarmatrizen.
- .
- .
- .
Es sei ein Körper und sei eine - Matrix über . Dann nennt man die Dimension des von den Spalten erzeugten Untervektorraums von den (Spalten-)Rang der Matrix, geschrieben
Es sei ein Körper und sei eine - Matrix über . Zu sei diejenige -Matrix, die entsteht, wenn man in die erste Spalte und die -te Zeile weglässt. Dann definiert man rekursiv die Determinante von durch
Es sei ein Körper und seien und Vektorräume über . Eine Abbildung
heißt multilinear, wenn für jedes und jedes -Tupel mit die induzierte Abbildung
- linear ist.
Es sei ein Körper, und seien - Vektorräume und sei . Eine multilineare Abbildung
heißt alternierend, wenn folgendes gilt: Falls in zwei Einträge übereinstimmen, also für ein Paar , so ist
Es sei ein - dimensionaler Vektorraum über einem Körper . Eine Abbildung
heißt Determinantenfunktion, wenn die beiden folgenden Bedingungen erfüllt sind.
- ist multilinear.
- ist alternierend.
Es sei ein Körper und sei eine - Matrix über . Dann nennt man die -Matrix
die transponierte Matrix zu .
Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei
eine lineare Abbildung, die bezüglich einer Basis durch die Matrix beschrieben werde. Dann nennt man
die Determinante der linearen Abbildung .
Zu einer quadratischen Matrix heißt
wobei die Streichungsmatrix zur -ten Zeile und zur -ten Spalte ist, die adjungierte Matrix (Adjunkte) von .
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Dann heißt ein Element , , ein Eigenvektor von (zum Eigenwert ), wenn
mit einem gilt.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Dann heißt ein Element ein Eigenwert zu , wenn es einen von verschiedenen Vektor mit
gibt.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Zu nennt man
den Eigenraum von zum Wert .
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Dann heißt diagonalisierbar, wenn eine Basis aus Eigenvektoren zu besitzt.
Der Polynomring über einem Körper besteht aus allen Polynomen
mit , , und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
definiert ist.
Der Grad eines von verschiedenen Polynoms
mit ist .
Zu einer - Matrix mit Einträgen in einem Körper heißt das Polynom
das charakteristische Polynom von .
Es sei ein reeller Vektorraum. Ein Skalarprodukt auf ist eine Abbildung
mit folgenden Eigenschaften:
- Es ist
für alle , und ebenso in der zweiten Komponente.
- Es ist
für alle .
- Es ist für alle und genau dann, wenn ist.
Ein reeller, endlichdimensionaler Vektorraum, der mit einem Skalarprodukt versehen ist, heißt euklidischer Vektorraum.
Es sei ein Vektorraum über mit einem Skalarprodukt . Man nennt zwei Vektoren orthogonal zueinander (oder senkrecht), wenn
ist.
Es sei ein euklidischer Vektorraum und ein Untervektorraum. Dann heißt
das orthogonale Komplement von .
Es sei ein euklidischer Vektorraum. Eine Basis von heißt Orthonormalbasis, wenn
gilt.
Es sei ein Vektorraum über mit einem Skalarprodukt . Dann nennt man zu einem Vektor die reelle Zahl
die Norm von .
Es sei ein Vektorraum über mit einem Skalarprodukt . Zu zwei Vektoren nennt man
den Abstand zwischen und .
Es sei eine Menge. Eine Abbildung heißt Metrik (oder Distanzfunktion), wenn für alle die folgenden Bedingungen erfüllt sind:
- genau dann, wenn ist (Definitheit),
- (Symmetrie), und
- (Dreiecksungleichung).
Ein metrischer Raum ist ein Paar , wobei eine Menge und eine Metrik ist.
Es sei ein metrischer Raum, und eine positive reelle Zahl. Es ist
die offene und
die abgeschlossene -Kugel um .
Es sei ein metrischer Raum. Eine Teilmenge heißt offen (in ), wenn für jedes ein mit
existiert.
Es sei ein metrischer Raum. Eine Teilmenge heißt abgeschlossen, wenn das Komplement offen ist.
Eine Teilmenge eines metrischen Raumes heißt beschränkt, wenn es eine reelle Zahl mit
gibt.
Es sei ein metrischer Raum und sei eine Folge in . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.
Zu jedem , , gibt es ein derart, dass für alle die Beziehung
gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch
Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.
Es sei ein metrischer Raum und sei eine Folge in . Ein Punkt heißt Häufungspunkt der Folge, wenn es für jedes unendlich viele Folgenglieder mit gibt.
Es sei ein metrischer Raum und sei eine Folge in . Zu jeder streng wachsenden Abbildung , , heißt die Folge
eine Teilfolge der Folge.
Es seien und metrische Räume,
eine Abbildung und . Die Abbildung heißt stetig in , wenn für jedes ein derart existiert, dass
gilt. Die Abbildung heißt stetig, wenn sie stetig in für jedes ist.
Ein metrischer Raum heißt zusammenhängend, wenn es genau zwei Teilmengen von gibt (nämlich und selbst), die sowohl offen als auch abgeschlossen sind.
Eine Teilmenge heißt kompakt, wenn sie abgeschlossen und beschränkt ist.
Es sei eine Menge und
eine Funktion. Man sagt, dass in einem Punkt das Maximum annimmt, wenn
und dass das Minimum annimmt, wenn
Es sei ein metrischer Raum und
eine Funktion. Man sagt, dass in einem Punkt ein lokales Maximum besitzt, wenn es ein derart gibt, dass für alle mit die Abschätzung
gilt. Man sagt, dass in ein lokales Minimum besitzt, wenn es ein derart gibt, dass für alle mit die Abschätzung
gilt.
Es sei
eine Abbildung zwischen den metrischen Räumen und . Dann heißt gleichmäßig stetig, wenn es zu jedem ein mit folgender Eigenschaft gibt: Für alle mit ist .
Es sei ein metrischer Raum und eine Teilmenge. Ein Punkt heißt Berührpunkt von , wenn zu jedem der Durchschnitt
Es sei ein metrischer Raum und eine Teilmenge. Die Menge aller Berührpunkte von heißt der Abschluss von . Er wird mit bezeichnet.
Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei
eine Abbildung in einen weiteren metrischen Raum . Dann heißt der Grenzwert (oder Limes) von in , wenn es für jedes ein gibt mit der folgenden Eigenschaft: Für jedes ist . In diesem Fall schreibt man
Es sei ein metrischer Raum und eine Teilmenge. Es sei
eine stetige Abbildung in einen weiteren metrischen Raum und es sei . Dann heißt eine Abbildung
eine stetige Fortsetzung von , wenn stetig ist und gilt für alle .
Es sei eine positive reelle Zahl. Die Funktion
heißt Exponentialfunktion zur Basis .
Es sei eine Folge von komplexen Zahlen. Unter der Reihe versteht man die Folge der Partialsummen
Falls die Folge konvergiert, so sagt man, dass die Reihe konvergiert. In diesem Fall schreibt man für den Grenzwert ebenfalls
und nennt ihn die Summe der Reihe.
Eine Reihe
von komplexen Zahlen heißt absolut konvergent, wenn die Reihe
konvergiert.
Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Diese Familie heißt summierbar, wenn es ein mit folgender Eigenschaft gibt: Zu jedem gibt es eine endliche Teilmenge derart, dass für alle endlichen Teilmengen mit die Beziehung
gilt. Dabei ist . Im summierbaren Fall heißt die Summe der Familie.
Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Diese Familie heißt eine Cauchy-Familie, wenn es zu jedem eine endliche Teilmenge derart gibt, dass für jede endliche Teilmenge mit die Beziehung
gilt. Dabei ist .
Zu Reihen und komplexer Zahlen heißt die Reihe
das Cauchy-Produkt der beiden Reihen.
Es sei eine Folge von komplexen Zahlen und eine weitere komplexe Zahl. Dann heißt die Reihe
die Potenzreihe in zu den Koeffizienten .
Für jedes heißt die Reihe
die Exponentialreihe in .
Die Abbildung
heißt (komplexe) Exponentialfunktion.
Für heißt
die Kosinusreihe und
die Sinusreihe zu .
Es sei eine Menge, ein metrischer Raum und
() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge punktweise konvergiert, wenn für jedes die Folge
konvergiert.
Es sei eine Menge, ein metrischer Raum und
() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge gleichmäßig konvergiert, wenn es eine Abbildung
derart gibt, dass es zu jedem ein gibt mit
Es sei eine Menge und
eine Funktion. Dann nennt man
das Supremum (oder die Supremumsnorm) von . Es ist eine nichtnegative reelle Zahl oder .
Für eine Potenzreihe
heißt
der Konvergenzradius der Potenzreihe. Das ist eine nichtnegative reelle Zahl oder .
Es sei offen, ein Punkt und
eine Funktion. Zu , , heißt die Zahl
der Differenzenquotient von zu und .
Es sei offen, ein Punkt und
eine Funktion. Man sagt, dass differenzierbar in ist, wenn der Limes
existiert. Im Fall der Existenz heißt dieser Limes der Differentialquotient oder die Ableitung von in , geschrieben
Es sei offen und
eine Funktion. Man sagt, dass differenzierbar ist, wenn für jeden Punkt die Ableitung von in existiert. Die Abbildung
heißt die Ableitung (oder Ableitungsfunktion) von .
Es sei offen und
eine Funktion. Man sagt, dass -mal differenzierbar ist, wenn -mal differenzierbar ist und die -te Ableitung differenzierbar ist. Die Ableitung
nennt man dann die -te Ableitung von .
Es sei die eindeutig bestimmte reelle Nullstelle der Kosinusfunktion aus dem Intervall . Die Kreiszahl ist durch
definiert.
Es sei eine offene Teilmenge,
eine -mal differenzierbare Funktion und . Dann heißt
das Taylor-Polynom vom Grad zu im Entwicklungspunkt .
Es sei eine offene Teilmenge,
eine -oft differenzierbare Funktion und . Dann heißt
die Taylor-Reihe zu im Entwicklungspunkt .