Kurs:Mathematik für Anwender/Teil I/14/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 4 }

\renewcommand{\aacht}{ 5 }

\renewcommand{\aneun}{ 3 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 6 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 3 }

\renewcommand{\aneunzehn}{ 4 }

\renewcommand{\azwanzig}{ 4 }

\renewcommand{\aeinundzwanzig}{ 64 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Der \stichwort {Binomialkoeffizient} {}
\mathl{\binom { n } { k }}{.}

}{Der \stichwort {Körper der komplexen Zahlen} {} \zusatzklammer {mit den Verknüpfungen} {} {.}

}{Die \stichwort {eulersche Zahl} {} $e$.

}{Das \stichwort {Oberintegral} {} einer nach oben beschränkten Funktion \maabbdisp {f} {I} {\R } {} auf einem beschränkten Intervall
\mathl{I \subseteq \R}{.}

}{Ein \stichwort {Erzeugendensystem} {}
\mathl{v_1 , \ldots , v_n}{} eines $K$-Vektorraumes $V$.

}{Eine
\mathl{m \times n}{-}\stichwort {Matrix} {} über einem \definitionsverweis {Körper}{}{} $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Quadratwurzel von $2$.}{Der Satz über die Charakterisierung von Extrema mit höheren Ableitungen.}{Der Satz über den Rang von einer Matrix und einer linearen Abbildung.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Anfang März beträgt die Zeitdifferenz zwischen Deutschland und Paraguay $4$ Stunden \zusatzklammer {in Paraguay wurde es $4$ Stunden später hell} {} {.} Am 25. März 2018 wurde in Deutschland die Uhr von der Winterzeit auf die Sommerzeit umgestellt, die Uhr wurde also um eine Stunde nachts von $2$ auf $3$ vorgestellt. In der gleichen Nacht wurde die Uhr in Paraguay umgestellt. Wie groß war die Zeitdifferenz nach der Umstellung?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien $L,M,N$ Mengen und
\mathdisp {f:L \longrightarrow M \text{ und } g:M \longrightarrow N} { }
\definitionsverweis {Abbildungen}{}{} mit der \definitionsverweis {Hintereinanderschaltung}{}{} \maabbeledisp {g \circ f} {L} {N } {x} {g(f(x)) } {.} Zeige: Wenn $g \circ f$ \definitionsverweis {injektiv}{}{} ist, so ist auch $f$ injektiv.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Beweise den Satz, dass es unendlich viele Primzahlen gibt.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme für das Polynom
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {7X^{11}-3X^8+ { \frac{ 3 }{ 2 } } X^6 -X +5 }
{ } { }
{ } { }
{ } { }
} {}{}{} den Grad, den Leitkoeffizienten, den Leitterm und den Koeffizienten zu $X^5$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz, dass der \definitionsverweis {Limes}{}{} einer \definitionsverweis {konvergenten Folge}{}{} in $\R$ eindeutig bestimmt ist.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zu
\mathl{n \in \N_+}{} sei $a_n$ die Summe der ungeraden Zahlen bis $n$ und $b_n$ die Summe der geraden Zahlen bis $n$. Entscheide, ob die Folge
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { { \frac{ a_n }{ b_n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} in $\Q$ \definitionsverweis {konvergiert}{}{,} und bestimme gegebenenfalls den Grenzwert.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R} {\R } {x} {x^3-4x +2 } {.} Bestimme, ausgehend vom Intervall
\mathl{[1,2]}{,} mit der Intervallhalbierungsmethode ein Intervall der Länge
\mathl{1/8}{,} in dem eine Nullstelle von $f$ liegen muss.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei
\mavergleichskette
{\vergleichskette
{u }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} fixiert. Zeige, dass die Potenzfunktion \maabbeledisp {f} {\R_+} {\R } {x} {x^u } {,} \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Beweise elementargeometrisch den \stichwort {Sinussatz} {,} also die Aussage, dass in einem \definitionsverweis {nichtausgearteten Dreieck}{}{} die Gleichheiten
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ \sin \alpha } } }
{ =} { { \frac{ b }{ \sin \beta } } }
{ =} { { \frac{ c }{ \sin \gamma } } }
{ } { }
{ } { }
} {}{}{} gelten, wobei
\mathl{a,b,c}{} die Seitenlängen gegenüber den Ecken mit den Winkeln
\mathl{\alpha, \beta, \gamma}{} sind.

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

\aufzaehlungzwei {Zeige, dass eine \definitionsverweis {ungerade Funktion}{}{} \maabb {f} {\R} {\R } {} im Nullpunkt ein globales Extremum haben kann. } {Zeige, dass eine ungerade Funktion \maabb {f} {\R} {\R } {} im Nullpunkt kein isoliertes lokales Extremum haben kann. }

}
{} {}




\inputaufgabegibtloesung
{6 (1+1+4)}
{

\aufzaehlungdrei{Es sei
\mavergleichskette
{\vergleichskette
{a }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{g(x) }
{ = }{a^x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die \definitionsverweis {Exponentialfunktion}{}{} zur Basis $a$. Zeige, dass es ein
\mavergleichskette
{\vergleichskette
{w }
{ \in }{\R_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ g(x+w) }
{ = }{ 2 g(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt. }{Es sei
\mavergleichskette
{\vergleichskette
{w }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorgeben. Zeige, dass es eine Exponentialfunktion
\mathl{b^x}{} mit
\mavergleichskette
{\vergleichskette
{b }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und mit
\mavergleichskettedisp
{\vergleichskette
{b^{x+w} }
{ =} { 2 b^x }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt. }{Man gebe ein Beispiel für eine stetige, streng wachsende Funktion \maabb {f} {\R} {\R } {} mit
\mavergleichskette
{\vergleichskette
{ f(x+1) }
{ = }{ 2 f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} die keine Exponentialfunktion ist. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme eine \definitionsverweis {Stammfunktion}{}{} für die \definitionsverweis {Funktion}{}{}
\mathdisp {\tan x} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise die Newton-Leibniz-Formel.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Löse das \definitionsverweis {inhomogene Gleichungssystem}{}{}
\mathdisp {\begin{matrix} x & + y & + z & \, \, \, \, - w & = & 3 \\ -2 x & +5 y & -3 z & + w & = & 0 \\ x & \, \, \, \, - y & +2 z & \, \, \, \, \, \, \, \, & = & 2 \\ 5 x & +2 y & \, \, \, \, - z & \, \, \, \, \, \, \, \, & = & -1 \, . \end{matrix}} { }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Wir betrachten das kleine Einmaleins \zusatzklammer {ohne die Zehnerreihe} {} {} als eine Familie von $9$-Tupeln der Länge $9$. Welche \definitionsverweis {Dimension}{}{} besitzt der durch diese Tupel \definitionsverweis {aufgespannte Untervektorraum}{}{} des $\R^9$?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$ der \definitionsverweis {Dimension}{}{} \mathkor {} {n} {bzw.} {m} {.} Es sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{,} die bezüglich zweier \definitionsverweis {Basen}{}{} durch die \definitionsverweis {Matrix}{}{}
\mavergleichskette
{\vergleichskette
{ M }
{ \in }{ \operatorname{Mat}_{ m \times n } (K) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} beschrieben werde. Zeige, dass $\varphi$ genau dann \definitionsverweis {surjektiv}{}{} ist, wenn die Spalten der Matrix ein \definitionsverweis {Erzeugendensystem}{}{} von $K^m$ bilden.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme die komplexen Zahlen $z$, für die die Matrix
\mathdisp {\begin{pmatrix} z & 2 & 2z+1 \\ 3 & 1 & 4 \\z & 5 & z \end{pmatrix}} { }
nicht invertierbar ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $M$ eine untere Dreiecksmatrix. Zeige, ausgehend von der Definition der Determinante, dass die Determinante von $M$ das Produkt der Diagonaleinträge ist \zusatzklammer {es darf verwendet werden, dass die Determinante zu einer Matrix mit einer Nullzeile gleich $0$ ist} {} {.}

}
{} {}