Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 3/latex

Aus Wikiversity

\setcounter{section}{3}






\zwischenueberschrift{Mengen}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Georg_Cantor.jpg} }
\end{center}
\bildtext {Georg Cantor (1845-1918) ist der Schöpfer der Mengentheorie.} }

\bildlizenz { Georg Cantor 1894.jpg } {} {Taxiarchos228} {Commons} {PD} {}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {David_Hilbert_1886.jpg } }
\end{center}
\bildtext {David Hilbert (1862-1943) nannte sie ein
\betonung{Paradies}{,} aus dem die Mathematiker nie mehr vertrieben werden dürfen.} }

\bildlizenz { David Hilbert 1886.jpg } {Unbekannt (1886)} {} {Commons} {PD} {}


Mathematische Strukturen, wie die bereits erwähnten Zahlen, werden als Mengen beschrieben. Eine \stichwort {Menge} {} ist eine Ansammlung von wohlunterschiedenen Objekten, die die \stichwort {Elemente} {} der Menge heißen. Mit \anfuehrung{wohlunterschieden}{} meint man, dass es klar ist, welche Objekte als gleich und welche als verschieden angesehen werden. Die \stichwort {Zugehörigkeit} {} eines Elementes $x$ zu einer Menge $M$ wird durch
\mavergleichskettedisp
{\vergleichskette
{x }
{ \in} {M }
{ } { }
{ } { }
{ } { }
} {}{}{} ausgedrückt, die Nichtzugehörigkeit durch
\mavergleichskettedisp
{\vergleichskette
{x }
{ \notin} { M }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für jedes Element(symbol) gilt stets genau eine dieser zwei Möglichkeiten. Beispielsweise ist
\mavergleichskette
{\vergleichskette
{ { \frac{ 3 }{ 7 } } }
{ \notin }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ { \frac{ 3 }{ 7 } } }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Für Mengen gilt das \stichwort {Extensionalitätsprinzip} {,} d.h. eine Menge ist durch die in ihr enthaltenen Elemente eindeutig bestimmt, darüber hinaus bietet sie keine Information. Insbesondere stimmen zwei Mengen überein, wenn beide die gleichen Elemente enthalten.

Die Menge, die kein Element besitzt, heißt
\definitionswortenp{leere Menge}{} und wird mit
\mathdisp {\emptyset} { }
bezeichnet.

Eine Menge $N$ heißt \stichwort {Teilmenge} {} einer Menge $M$, wenn jedes Element aus $N$ auch zu $M$ gehört. Man schreibt dafür
\mavergleichskette
{\vergleichskette
{N }
{ \subseteq }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {manche schreiben dafür $N \subset M$} {} {.} Man sagt dafür auch, dass eine \stichwort {Inklusion} {}
\mavergleichskettek
{\vergleichskettek
{N }
{ \subseteq }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorliegt. Für die erwähnten Zahlenmengen gelten die Inklusionen
\mavergleichskettedisp
{\vergleichskette
{\N }
{ \subseteq} {\Z }
{ \subseteq} {\Q }
{ \subseteq} {\R }
{ } { }
} {}{}{.} Die Teilmengenbeziehung
\mavergleichskette
{\vergleichskette
{N }
{ \subseteq }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist eine Allaussage. Im Nachweis, dass
\mavergleichskettek
{\vergleichskettek
{N }
{ \subseteq }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, muss man zeigen, dass für ein beliebiges Element
\mavergleichskettek
{\vergleichskettek
{x }
{ \in }{N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ebenfalls die Beziehung
\mavergleichskettek
{\vergleichskettek
{x }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt. Dabei darf man lediglich die Eigenschaft
\mavergleichskettek
{\vergleichskettek
{x }
{ \in }{N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} verwenden. Für uns werden Mengen hauptsächlich Zahlenmengen und daraus konstruierte Mengen sein. Eine Menge heißt \stichwort {endlich} {,} wenn sie durch die natürlichen Zahlen
\mathl{1,2,3 , \ldots , n}{} für ein gewisses
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \anfuehrung{sinnvoll abgezählt}{} werden kann. In diesem Fall nennt man $n$ die \stichwort {Anzahl} {} der Menge.






\zwischenueberschrift{Beschreibungsmöglichkeiten für Mengen}

Es gibt mehrere Möglichkeiten, eine Menge anzugeben. Die einfachste ist, die zu der Menge gehörenden Elemente aufzulisten, wobei es auf die Reihenfolge der Elemente nicht ankommt. Bei endlichen Mengen ist dies unproblematisch, bei unendlichen Mengen muss man ein \anfuehrung{Bildungsgesetz}{} für die Elemente angeben.

Die wichtigste Menge, die man zumeist als eine fortgesetzte Auflistung einführt, ist die Menge der natürlichen Zahlen
\mavergleichskettedisp
{\vergleichskette
{ \N }
{ =} { \{ 0,1,2,3, \ldots \} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Hier wird eine bestimmte Zahlenmenge durch die Anfangsglieder von erlaubten Zifferfolgen angedeutet. Wichtig ist, dass mit $\N$ nicht eine Menge von bestimmten Ziffern gemeint ist, sondern die durch die Ziffern repräsentierten Zahlwerte. Eine natürliche Zahl hat viele Darstellungsarten, die Ziffernrepräsentation im Zehnersystem ist nur eine davon, wenn auch eine besonders übersichtliche.

Wir besprechen Mengenbeschreibung durch Eigenschaften. Es sei eine Menge $M$ gegeben. In ihr gibt es gewisse Elemente, die gewisse Eigenschaften $E$ \zusatzklammer {Prädikate} {} {} erfüllen können oder aber nicht. Zu einer Eigenschaft $E$ gehört innerhalb von $M$ die Teilmenge bestehend aus allen Elementen aus $M$, die diese Eigenschaft erfüllen. Man beschreibt eine durch eine Eigenschaft definierte Teilmenge meist als
\mavergleichskettedisp
{\vergleichskette
{ { \left\{ x \in M \mid E(x) \right\} } }
{ =} { { \left\{ x \in M \mid x \text{ besitzt die Eigenschaft } E \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies geht natürlich nur mit solchen Eigenschaften, für die die Aussage
\mathl{E(x)}{} eine wohldefinierte Bedeutung hat. Dieser Konstruktion entspricht in der Alltagssprache eine Formulierung mit einem Relativsatz, im Sinne von diejenigen Objekte, auf die die Eigenschaft $E$ zutrifft. Wenn man eine solche Teilmenge einführt, so gibt man ihr häufig sofort einen Namen \zusatzklammer {in dem auf die Eigenschaft $E$ Bezug genommen werden kann, aber nicht muss} {} {.} Z.B. kann man einführen
\mavergleichskettedisp
{\vergleichskette
{G }
{ =} { { \left\{ x \in \N \mid x \text{ ist gerade} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{U }
{ =} { { \left\{ x \in \N \mid x \text{ ist ungerade} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{Q }
{ =} { { \left\{ x \in \N \mid x \text{ ist eine Quadratzahl} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{}
\mavergleichskettedisp
{\vergleichskette
{ { \mathbb P } }
{ =} { { \left\{ x \in \N \mid x \text{ ist eine Primzahl} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für die Mengen in der Mathematik sind meist eine Vielzahl an mathematischen Eigenschaften relevant und daher gibt es meist auch eine Vielzahl an relevanten Teilmengen. Aber auch bei alltäglichen Mengen, wie etwa die Menge $K$ der Studierenden in einem Kurs, gibt es viele wichtige Eigenschaften, die gewisse Teilmengen festlegen, wie etwa
\mavergleichskettedisp
{\vergleichskette
{ O }
{ =} { { \left\{ x \in K \mid x \text{ kommt aus Osnabr}\ddot {\rm u}\text{ck} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { { \left\{ x \in K \mid x \text{ studiert im Nebenfach Physik} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{ D }
{ =} { { \left\{ x \in K \mid x \text{ hat im Dezember Geburtstag} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Die Menge $K$ ist dabei selbst durch eine Eigenschaft festgelegt, es ist ja
\mavergleichskettedisp
{\vergleichskette
{ K }
{ =} { { \left\{ x \mid x \text{ ist Studierender in diesem Kurs} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.}






\zwischenueberschrift{Mengenoperationen}

Es gibt mehrere Möglichkeiten, aus gegebenen Mengen neue Mengen zu bilden. Die wichtigsten sind die folgenden\zusatzfussnote {Die Symbolik kann man sich so merken: Bei Vereinigung denke man an englisch union, das $\cup$ sieht aus wie ein u. Der Durchschnitt ist das $\cap$. Die entsprechenden logischen Operationen oder bzw. und haben die analoge eckige Form $\vee$ bzw. $\wedge$} {.} {.} \auflistungdrei{\stichwort {Vereinigung} {}
\mavergleichskettedisp
{\vergleichskette
{ A \cup B }
{ \defeq} {{ \left\{ x \mid x \in A \text{ oder } x \in B \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{\stichwort {Durchschnitt} {}
\mavergleichskettedisp
{\vergleichskette
{ A \cap B }
{ \defeq} {{ \left\{ x \mid x \in A \text{ und } x \in B \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{\stichwort {Differenzmenge} {}
\mavergleichskettedisp
{\vergleichskette
{ A \setminus B }
{ \defeq} {{ \left\{ x \mid x \in A \text{ und } x \notin B \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} } Diese Operationen ergeben nur dann einen Sinn, wenn die beteiligten Mengen als Teilmengen in einer gemeinsamen Grundmenge gegeben sind. Dies sichert, dass man über die gleichen Elemente spricht. Häufig wird diese Grundmenge nicht explizit angegeben, dann muss man sie aus dem Kontext erschließen. Ein Spezialfall der Differenzmenge bei einer gegebenen Grundmenge $G$ ist das \stichwort {Komplement} {} einer Teilmenge
\mavergleichskette
{\vergleichskette
{A }
{ \subseteq }{G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} das durch
\mavergleichskettedisp
{\vergleichskette
{ \complement A }
{ \defeq} { G \setminus A }
{ =} { { \left\{ x \in G \mid x \notin A \right\} } }
{ } { }
{ } { }
} {}{}{} definiert ist. Wenn zwei Mengen einen leeren Schnitt haben, also
\mavergleichskette
{\vergleichskette
{A \cap B }
{ = }{ \emptyset }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt, so nennen wir sie
\definitionswortenp{disjunkt}{.}






\zwischenueberschrift{Produktmenge}

Wir wollen die Rechenoperationen auf den oben erwähnten Zahlenmengen, insbesondere die Addition und die Multiplikation, mengentheoretisch erfassen. Bei der Addition \zusatzklammer {beispielsweise auf $\N$} {} {} wird zwei natürlichen Zahlen \mathkor {} {a} {und} {b} {} eine weitere natürliche Zahl, nämlich
\mathl{a+b}{,} zugeordnet. Die Menge der Paare nennt man Produktmenge und die Zuordnung führt zum Begriff der Abbildung.

Wir definieren\zusatzfussnote {Definitionen werden in der Mathematik zumeist als solche deutlich herausgestellt und bekommen eine Nummer, damit man auf sie einfach Bezug nehmen kann. Es wird eine Situation beschrieben, bei der die verwendeten Begriffe schon zuvor definiert worden sein mussten, und in dieser Situation wird einem neuen Konzept ein Name \zusatzklammer {eine Bezeichnung} {} {} gegeben. Dieser Name wird
\betonung{kursiv}{} gesetzt. Man beachte, dass das Konzept auch ohne den neuen Namen formulierbar ist, der neue Name ist nur eine Abkürzung für das Konzept. Sehr häufig hängen die Begriffe von Eingaben ab, wie den beiden Mengen in dieser Definition. Bei der Namensgebung herrscht eine gewisse Willkür, so dass die Bedeutung der Bezeichnung im mathematischen Kontext sich allein aus der expliziten Definition, aber nicht aus der alltäglichen Wortbedeutung erschließen lässt.} {} {.}




\inputdefinition
{}
{

Es seien zwei Mengen \mathkor {} {L} {und} {M} {} gegeben. Dann nennt man die Menge
\mavergleichskettedisp
{\vergleichskette
{ L \times M }
{ =} { { \left\{ (x,y) \mid x \in L , \, y \in M \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} die \definitionswort {Produktmenge}{} der beiden Mengen.

}

Die Elemente der Produktmenge nennt man \stichwort {Paare} {} und schreibt
\mathl{(x,y)}{.} Dabei kommt es wesentlich auf die Reihenfolge an. Die Produktmenge besteht also aus allen Paarkombinationen, wo in der ersten \stichwort {Komponenten} {} ein Element der ersten Menge und in der zweiten Komponenten ein Element der zweiten Menge steht. Zwei Paare sind genau dann gleich, wenn sie in beiden Komponenten gleich sind.

Wenn eine der beiden Mengen leer ist, so ist auch die Produktmenge leer. Wenn die beiden Mengen \stichwort {endlich} {} sind, und es in der ersten Menge $n$ Elemente und in der zweiten Menge $k$ Elemente gibt, so gibt es in der Produktmenge
\mathl{n \cdot k}{} Elemente. Man kann auch für mehr als nur zwei Mengen die Produktmenge bilden.




\inputbeispiel{}
{

Es sei $V$ die Menge aller Vornamen \zusatzklammer {sagen wir der Vornamen, die in einer bestimmten Grundmenge an Personen wirklich vorkommen} {} {} und $N$ die Menge aller Nachnamen. Dann ist
\mathdisp {V \times N} { }
die Menge aller Namen. Elemente davon sind in Paarschreibweise beispielsweise
\mathl{(\text{Heinz},\text{Müller})}{,}
\mathl{(\text{Petra}, \text{Müller})}{} und
\mathl{(\text{Lucy},\text{Sonnenschein})}{.} Aus einem Namen lässt sich einfach der Vorname und der Nachname herauslesen, indem man entweder auf die erste oder auf die zweite Komponente des Namens schaut. Auch wenn alle Vornamen und Nachnamen für sich genommen vorkommen, so muss natürlich nicht jeder daraus gebastelte mögliche Name wirklich vorkommen. Bei der Produktmenge werden eben alle Kombinationsmöglichkeiten aus den beiden beteiligten Mengen genommen.


}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {SquareLattice.svg} }
\end{center}
\bildtext {} }

\bildlizenz { SquareLattice.svg } {} {Jim.belk} {Commons} {PD} {}

Bei einer Produktmenge können natürlich auch beide Mengen gleich sein. Dann ist es verlockend, die Reihenfolge zu verwechseln, und also besonders wichtig, darauf zu achten, dies nicht zu tun.




\inputbeispiel{}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Chess board blank.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Chess board blank.svg } {} {Beao} {Commons} {CC-by-sa 3.0} {}

Ein Schachbrett \zusatzklammer {genauer: die Menge der Felder auf einem Schachbrett, auf denen eine Figur stehen kann} {} {} ist die Produktmenge
\mathdisp {\{a,b,c,d,e,f,g,h\} \times \{1,2,3,4,5,6,7,8\}} { . }
Jedes Feld ist ein Paar, beispielsweise
\mathl{(a,1), (d,4), (c,7)}{.} Da die beteiligten Mengen verschieden sind, kann man statt der Paarschreibweise einfach
\mathl{a1,d4,c7}{} schreiben. Diese Notation ist der Ausgangspunkt für die Beschreibung von Stellungen und von ganzen Partien.


}

Die Produktmenge
\mathl{\R \times \R}{} stellt man sich als eine Ebene vor, man schreibt dafür auch $\R^2$. Die Produktmenge
\mathl{\Z \times \Z}{} kann man sich als eine Menge von Gitterpunkten vorstellen.




\inputbeispiel{}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Geometri_cylinder.png} }
\end{center}
\bildtext {Ein Zylindermantel ist die Produktmenge aus einem Kreis und einer Strecke} }

\bildlizenz { Geometri cylinder.png } {} {Anp} {sv Wikipedia} {PD} {}

Es sei $S$ ein Kreis, worunter wir die Kreislinie verstehen, und $I$ eine Strecke. Der Kreis ist eine Teilmenge einer Ebene $E$ und die Strecke ist eine Teilmenge einer Geraden $G$, so dass für die Produktmenge die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ S \times I }
{ \subseteq} { E \times G }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Die Produktmenge
\mathl{E \times G}{} stellt man sich als einen dreidimensionalen Raum vor, und darin ist die Produktmenge
\mathl{S \times I}{} ein Zylindermantel.


}






\zwischenueberschrift{Abbildungen}

Ein physikalisches Teilchen bewege sich im Raum. Dieser Vorgang wird beschrieben, indem man zu jedem Zeitpunkt
\mavergleichskette
{\vergleichskette
{t }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} angibt, an welchem Ort
\mavergleichskette
{\vergleichskette
{z(t) }
{ \in }{\R^3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sich das Teilchen zu diesem Zeitpunkt befindet. Der Ablauf eines Computerprogramms, das insgesamt auf $s$ Speicher \zusatzklammer {die beispielsweise natürliche Zahlen enthalten können} {} {} Bezug nimmt, wird beschrieben, indem man zu jedem Rechenschritt \zusatzklammer {was der Abarbeitung einer Programmzeile entspricht, und zwar derjenigen Programmzeile, die bei diesem Rechenschritt aufgerufen wird} {} {} angibt, wie die Belegungen der Speicher nach der Ausführung des Befehls lauten. Einer Rechenschrittnummer $n$ wird also das Belegungstupel
\mavergleichskettedisp
{\vergleichskette
{(b_1 (n) , \ldots , b_s(n)) }
{ \in} { \N^s }
{ } { }
{ } { }
{ } { }
} {}{}{} zugeordnet. Bei einer Wahl muss sich jeder Wähler für genau eine Partei \zusatzklammer {oder für das Nichtwählen} {} {} entscheiden. Der Temperaturverlauf auf der Erdoberfläche wird dadurch beschrieben, wenn man jedem Zeitpunkt und jedem Punkt der Erdoberfläche die Temperatur zuordnet. Solche und viele andere Situationen werden durch das Konzept einer Abbildung beschrieben.




\inputdefinition
{}
{

Seien \mathkor {} {L} {und} {M} {} Mengen. Eine \definitionswort {Abbildung}{} $F$ von $L$ nach $M$ ist dadurch gegeben, dass jedem Element der Menge $L$ genau ein Element der Menge $M$ zugeordnet wird. Das zu
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eindeutig bestimmte Element wird mit
\mathl{F(x)}{} bezeichnet. Die Abbildung drückt man als Ganzes häufig durch \maabbeledisp {F} {L} {M } {x} {F(x) } {,} aus.

}

Bei einer Abbildung \maabb {F} {L} {M } {} heißt $L$ die
\definitionswortenp{Definitionsmenge}{} \zusatzklammer {oder Definitionsbereich} {} {} der Abbildung und $M$ die
\definitionswortenp{Wertemenge}{} \zusatzklammer {oder \stichwort {Wertevorrat} {} oder \stichwort {Zielbereich} {}} {} {} der Abbildung. Zu einem Element
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} heißt das Element
\mavergleichskette
{\vergleichskette
{F(x) }
{ \in }{ M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \stichwort {Wert} {} von $F$ an der \stichwort {Stelle} {} $x$. Statt Stelle sagt man auch häufig \stichwort {Argument} {.}

Zwei Abbildungen \mathkor {} {F \colon L_1\rightarrow M_1} {und} {G \colon L_2\rightarrow M_2} {} sind gleich, wenn die Definitionsmengen und die Wertemengen übereinstimmen und wenn für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ L_1 }
{ = }{ L_2 }
{ }{ }
{ }{ }
} {}{}{} die Gleichheit
\mavergleichskette
{\vergleichskette
{F(x) }
{ = }{G(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in
\mavergleichskette
{\vergleichskette
{M_1 }
{ = }{M_2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt. Die Gleichheit von Abbildungen wird also zurückgeführt auf die Gleichheit von Elementen in einer Menge.

Abbildungen werden häufig auch \stichwort {Funktionen} {} genannt. Wir werden den Begriff \stichwort {Funktion} {} für solche Abbildungen reservieren, deren Wertemenge die reellen Zahlen $\R$ sind.

Zu jeder Menge $L$ nennt man die Abbildung \maabbeledisp {} {L} {L } {x} {x } {,} also die Abbildung, die jedes Element auf sich selbst schickt, die \stichwort {Identität} {} \zusatzklammer {auf $L$} {} {.} Sie wird mit
\mathl{\operatorname{Id}_{ L }}{} bezeichnet. Zu einer weiteren Menge $M$ und einem fixierten Element
\mavergleichskette
{\vergleichskette
{c }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nennt man die Abbildung \maabbeledisp {} {L} {M } {x} {c } {,} die also jedem Element
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} den \stichwort {konstanten Wert} {} $c$ zuordnet, die
\definitionswortenp{konstante Abbildung}{} \zusatzklammer {mit dem Wert $c$} {} {.} Sie wird häufig wieder mit $c$ bezeichnet\zusatzfussnote {Von Hilbert stammt die etwas überraschende Aussage, die Kunst der Bezeichnung in der Mathematik besteht darin, unterschiedliche Sachen mit denselben Symbolen zu bezeichnen} {.} {.}

Für eine Abbildung gibt es mehrere Darstellungsmöglichkeiten, z.B. Wertetabelle, Balkendiagramm, Kuchendiagramm, Pfeildiagramm, den Graph der Abbildung. Dabei sind die Übergänge zwischen der formalen Definition einer Abbildung und den visuellen Realisierungen fließend. In der Mathematik wird eine Abbildung zumeist durch eine Abbildungsvorschrift beschrieben, die es erlaubt, die Werte der Abbildung zu berechnen. Solche Abbildungsvorschriften sind beispielsweise \zusatzklammer {jeweils von $\R$ nach $\R$} {} {}
\mathl{x \mapsto x^2}{,}
\mathl{x \mapsto x^3- e^x + \sin \left( x \right)}{,} etc. In den Naturwissenschaften und Sozialwissenschaften sind \stichwort {empirische Funktionen} {} wichtig, die reale Bewegungen oder Entwicklungen beschreiben, doch auch bei solchen Funktionen erhebt sich die Frage, ob man diese auch mathematisch gut beschreiben \zusatzklammer {approximieren} {} {} kann.






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Aplicacion_2.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Aplicación 2.svg } {} {HiTe} {Commons} {PD} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Beliebteste_Eissorten_in_Deutschland.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Beliebteste Eissorten in Deutschland.svg } {} {Doofi} {Commons} {PD} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Tiefkühlkonsum.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Tiefkühlkonsum.svg } {} {SInner1} {Commons} {CC-by-sa 3.0} {}

\wertetabellesechsausteilzeilen { $x$ }
{\mazeileundfuenf {1} {2} {3} {4} {5} }
{ {6 } }
{ $\pi(x)$ }
{\mazeileundfuenf {2} {4} {6} {5} {3} }
{ {1} }




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Exp.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Exp.svg } {Peter John Acklam} {} {Commons} {CC-by-sa 3.0} {}

%Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\cdot$ }

\renewcommand{\leitzeileeins}{ $0$ }

\renewcommand{\leitzeilezwei}{ $1$ }

\renewcommand{\leitzeiledrei}{ $2$ }

\renewcommand{\leitzeilevier}{ $3$ }

\renewcommand{\leitzeilefuenf}{ $4$ }

\renewcommand{\leitzeilesechs}{ $5$ }

\renewcommand{\leitzeilesieben}{ $6$ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ $\cdot$ }

\renewcommand{\leitspalteeins}{ $0$ }

\renewcommand{\leitspaltezwei}{ $1$ }

\renewcommand{\leitspaltedrei}{ $2$ }

\renewcommand{\leitspaltevier}{ $3$ }

\renewcommand{\leitspaltefuenf}{ $4$ }

\renewcommand{\leitspaltesechs}{ $5$ }

\renewcommand{\leitspaltesieben}{ $6$ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ 0 }

\renewcommand{\aeinsxzwei}{ 0 }

\renewcommand{\aeinsxdrei}{ 0 }

\renewcommand{\aeinsxvier}{ 0 }

\renewcommand{\aeinsxfuenf}{ 0 }

\renewcommand{\aeinsxsechs}{ 0 }

\renewcommand{\aeinsxsieben}{ 0 }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ 0 }

\renewcommand{\azweixzwei}{ 1 }

\renewcommand{\azweixdrei}{ 2 }

\renewcommand{\azweixvier}{ 3 }

\renewcommand{\azweixfuenf}{ 4 }

\renewcommand{\azweixsechs}{ 5 }

\renewcommand{\azweixsieben}{ 6 }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ 0 }

\renewcommand{\adreixzwei}{ 2 }

\renewcommand{\adreixdrei}{ 4 }

\renewcommand{\adreixvier}{ 6 }

\renewcommand{\adreixfuenf}{ 1 }

\renewcommand{\adreixsechs}{ 3 }

\renewcommand{\adreixsieben}{ 5 }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ 0 }

\renewcommand{\avierxzwei}{ 3 }

\renewcommand{\avierxdrei}{ 6 }

\renewcommand{\avierxvier}{ 2 }

\renewcommand{\avierxfuenf}{ 5 }

\renewcommand{\avierxsechs}{ 1 }

\renewcommand{\avierxsieben}{ 4 }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ 0 }

\renewcommand{\afuenfxzwei}{ 4 }

\renewcommand{\afuenfxdrei}{ 1 }

\renewcommand{\afuenfxvier}{ 5 }

\renewcommand{\afuenfxfuenf}{ 2 }

\renewcommand{\afuenfxsechs}{ 6 }

\renewcommand{\afuenfxsieben}{ 3 }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ 0 }

\renewcommand{\asechsxzwei}{ 5 }

\renewcommand{\asechsxdrei}{ 3 }

\renewcommand{\asechsxvier}{ 1 }

\renewcommand{\asechsxfuenf}{ 6 }

\renewcommand{\asechsxsechs}{ 4 }

\renewcommand{\asechsxsieben}{ 2 }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ 0 }

\renewcommand{\asiebenxzwei}{ 6 }

\renewcommand{\asiebenxdrei}{ 5 }

\renewcommand{\asiebenxvier}{ 4 }

\renewcommand{\asiebenxfuenf}{ 3 }

\renewcommand{\asiebenxsechs}{ 2 }

\renewcommand{\asiebenxsieben}{ 1 }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitsiebenxsieben






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Monkey_Saddle_Surface_(Shaded).png} }
\end{center}
\bildtext {} }

\bildlizenz { Monkey Saddle Surface (Shaded).png } {} {Inductiveload} {Commons} {PD} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Schoenberg-ebringen-isohypsen.png} }
\end{center}
\bildtext {} }

\bildlizenz { Schoenberg-ebringen-isohypsen.png } {} {W-j-s} {Commons} {CC-by-sa 3.0} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Elliptic_orbit.gif} }
\end{center}
\bildtext {} }

\bildlizenz { Elliptic orbit.gif } {} {Brandir} {Commons} {CC-BY-SA 2.5} {}






\zwischenueberschrift{Injektive und surjektive Abbildungen}




\inputdefinition
{}
{

Es seien $L$ und $M$ Mengen und es sei \maabbeledisp {F} {L} {M } {x} {F(x) } {,} eine \definitionsverweis {Abbildung}{}{.} Dann heißt $F$ \definitionswort {injektiv}{,} wenn für je zwei verschiedene Elemente
\mavergleichskette
{\vergleichskette
{ x,x' }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} auch \mathkor {} {F(x)} {und} {F(x')} {} verschieden sind.

}

Bein Nachweis der Injektivität einer Abbildung geht man häufig so vor, dass man zu zwei gegebenen Elementen \mathkor {} {x} {und} {x'} {} aus der Voraussetzung
\mavergleichskette
{\vergleichskette
{F(x) }
{ = }{F(x') }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} erschließt, dass
\mavergleichskette
{\vergleichskette
{x }
{ = }{x' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Dies ist oft einfacher zu zeigen, als aus
\mavergleichskette
{\vergleichskette
{x }
{ \neq }{x' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} auf
\mavergleichskette
{\vergleichskette
{F(x) }
{ \neq }{F(x') }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} zu schließen.




\inputdefinition
{}
{

Es seien \mathkor {} {L} {und} {M} {} Mengen und es sei \maabbeledisp {F} {L} {M } {x} {F(x) } {,} eine \definitionsverweis {Abbildung}{}{.} Dann heißt $F$ \definitionswort {surjektiv}{,} wenn es für jedes
\mavergleichskette
{\vergleichskette
{y }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mindestens ein Element
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{F(x) }
{ =} {y }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}




\inputbeispiel{}
{

Wir betrachten zu einem Fußballspiel die Abbildung, die jedem Tor, das die Mannschaft $A$ erzielt hat, den zugehörigen Torschützen zuordnet. Es gebe keine Eigentore und keine Auswechslungen, die Tore von $A$ werden mit
\mathl{1,2, \ldots, n}{} durchnummeriert. Dann liegt eine Abbildung \maabbdisp {\psi} { { \{ 1 , \ldots , n \} } } { A = \{ \text{Spieler } 1, \,\text{Spieler } 2 , \ldots , \text{Spieler } 11 \} } {} mit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ \psi(i) }
{ =} { \text{ derjenige Spieler, der das } i\text{-te Tor geschossen hat} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Die Injektivität von $\psi$ bedeutet, dass jeder Spieler höchstens ein Tor geschossen hat, und die Surjektivität bedeutet, dass jeder Spieler mindestens ein Tor geschossen hat.


}




\inputbeispiel{}
{

Es sei $H$ die Menge aller \zusatzklammer {lebenden oder verstorbenen} {} {} Menschen. Wir untersuchen die Abbildung \maabbdisp {\varphi} {H} {H } {,} die jedem Menschen seine \zusatzklammer {biologische} {} {} Mutter zuordnet. Dies ist eine wohldefinierte Abbildung, da jeder Mensch eine eindeutig bestimmte Mutter besitzt. Diese Abbildung ist nicht \definitionsverweis {injektiv}{}{,} da es ja verschiedene Menschen \zusatzklammer {Geschwister} {} {} gibt, die die gleiche Mutter haben. Sie ist auch nicht \definitionsverweis {surjektiv}{}{,} da nicht jeder Mensch Mutter von jemandem ist.


}




\inputbeispiel{}
{

Die \definitionsverweis {Abbildung}{}{} \maabbeledisp {} {\R} {\R } {x} {x^2 } {,} ist weder injektiv noch surjektiv. Sie ist nicht \definitionsverweis {injektiv}{}{,} da die verschiedenen Zahlen \mathkor {} {2} {und} {-2} {} beide auf $4$ abgebildet werden. Sie ist nicht \definitionsverweis {surjektiv}{}{,} da nur nichtnegative Elemente erreicht werden \zusatzklammer {eine negative Zahl hat keine reelle Quadratwurzel} {} {.} Die Abbildung \maabbeledisp {} {\R_{\geq 0} } {\R } {x} {x^2 } {,} ist injektiv, aber nicht surjektiv. Die Injektivität folgt beispielsweise so: Wenn
\mavergleichskette
{\vergleichskette
{x }
{ \neq }{y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, so ist eine Zahl größer, sagen wir
\mavergleichskettedisp
{\vergleichskette
{x }
{ >} {y }
{ \geq} {0 }
{ } { }
{ } { }
} {}{}{.} Doch dann ist auch
\mavergleichskette
{\vergleichskette
{x^2 }
{ > }{ y^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und insbesondere
\mavergleichskette
{\vergleichskette
{x^2 }
{ \neq }{y^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die Abbildung \maabbeledisp {} {\R} {\R_{\geq 0} } {x} {x^2 } {,} ist nicht injektiv, aber surjektiv, da jede nichtnegative reelle Zahl eine Quadratwurzel besitzt. Die Abbildung \maabbeledisp {} {\R_{\geq 0}} {\R_{\geq 0} } {x} {x^2 } {,} ist injektiv und surjektiv.


}




\inputdefinition
{}
{

Es seien $M$ und $L$ Mengen und es sei \maabbeledisp {F} {M} {L } {x} {F(x) } {,} eine \definitionsverweis {Abbildung}{}{.} Dann heißt $F$ \definitionswort {bijektiv}{,} wenn $F$ sowohl \definitionsverweis {injektiv}{}{} als auch \definitionsverweis {surjektiv}{}{} ist.

}






\inputbemerkung
{}
{

Die Frage, ob eine Abbildung \maabb {F} {L} {M} {} die Eigenschaften \definitionsverweis {injektiv}{}{} oder \definitionsverweis {surjektiv}{}{} besitzt, kann man anhand der Gleichung
\mavergleichskettedisp
{\vergleichskette
{F(x) }
{ =} {y }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {in den beiden Variablen \mathkork {} {x} {und} {y} {}} {} {} erläutern. Die Surjektivität bedeutet, dass es zu jedem
\mavergleichskette
{\vergleichskette
{y }
{ \in }{ M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mindestens eine Lösung
\mavergleichskettedisp
{\vergleichskette
{x }
{ \in} { L }
{ } { }
{ } { }
{ } { }
} {}{}{} für diese Gleichung gibt, die Injektivität bedeutet, dass es zu jedem
\mavergleichskette
{\vergleichskette
{y }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} maximal eine Lösung
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für diese Gleichung gibt, und die Bijektivität bedeutet, dass es zu jedem
\mavergleichskette
{\vergleichskette
{y }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau eine Lösung
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für diese Gleichung gibt. Die Surjektivität entspricht also der Existenz von Lösungen, die Injektivität der Eindeutigkeit von Lösungen. Beide Fragestellungen durchziehen die Mathematik und können selbst wiederum häufig als die Surjektivität oder die Injektivität einer geeigneten Abbildung interpretiert werden.

}




\inputdefinition
{}
{

Es sei \maabb {F} {L} {M} {} eine \definitionsverweis {bijektive Abbildung}{}{.} Dann heißt die Abbildung \maabbdisp {G} {M} {L} {,} die jedes Element
\mavergleichskette
{\vergleichskette
{y }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} auf das eindeutig bestimmte Element
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{F(x) }
{ = }{y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} abbildet, die \definitionswort {Umkehrabbildung}{} zu $F$.

}




\inputdefinition
{}
{

Es seien $L,\, M$ und $N$ Mengen und \maabbeledisp {F} {L} {M } {x} {F(x) } {,} und \maabbeledisp {G} {M} {N } {y} {G(y) } {,} \definitionsverweis {Abbildungen}{}{.} Dann heißt die Abbildung \maabbeledisp {G \circ F} {L} {N } {x} {G(F(x)) } {,} die \definitionswort {Hintereinanderschaltung}{} der Abbildungen \mathkor {} {F} {und} {G} {.}

}

Es gilt also
\mavergleichskettedisp
{\vergleichskette
{ (G \circ F)(x) }
{ \defeq} { G(F(x)) }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei die linke Seite durch die rechte Seite definiert wird. Wenn die beiden Abbildungen durch funktionale Ausdrücke gegeben sind, so wird die Hintereinanderschaltung dadurch realisiert, dass man den ersten Ausdruck anstelle der Variablen in den zweiten Ausdruck einsetzt \zusatzklammer {und nach Möglichkeit vereinfacht} {} {.}


\inputfaktbeweis
{Abbildung/Hintereinanderschaltung/Assoziativ/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien $L, M, N$ und $P$ Mengen und es seien \maabbeledisp {F} {L} {M } {x} {F(x) } {,} \maabbeledisp {G} {M} {N } {y} {G(y) } {,} und \maabbeledisp {H} {N} {P } {z} {H(z) } {,} \definitionsverweis {Abbildungen}{}{.}}
\faktfolgerung {Dann ist
\mavergleichskettedisp
{\vergleichskette
{ H \circ (G \circ F) }
{ =} { (H \circ G) \circ F }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 3.26. }